login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337758
G.f. A(x) satisfies: [x^n] (1 + n*x + n*x^2 - A(x))^(n+1) = 0, for n > 0.
4
1, 3, 8, 41, 284, 2594, 29420, 395845, 6109724, 105714438, 2017696504, 41979555034, 943466064072, 22739452659420, 584304270694436, 15928490898945133, 458761105965272316, 13910124960218668430, 442657291681105692624, 14744175994124292681518, 512800784035081173166088
OFFSET
1,2
COMMENTS
Compare to: [x^n] (1 + n*x - C(x))^(n+1) = 0, for n>0, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
Compare to: [x^n] (1 + n*x - W(x))^n = 0, for n>0, where W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n! = 1 + x/LambertW(-x).
LINKS
FORMULA
a(n) is odd iff n is a power of 2 (conjecture).
a(n) = 2 (mod 4) iff n is twice the sum of two distinct powers of 2 (conjecture).
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 8*x^3 + 41*x^4 + 284*x^5 + 2594*x^6 + 29420*x^7 + 395845*x^8 + 6109724*x^9 + 105714438*x^10 + 2017696504*x^11 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1 + n*x + n*x^2 - A(x))^(n+1) begins:
n=0: [1, -1, -3, -8, -41, -284, -2594, -29420, -395845, ...];
n=1: [1, 0, -4, -16, -78, -536, -4960, -57048, -775089, ...];
n=2: [1, 3, 0, -29, -171, -1071, -9124, -100590, -1334241, ...];
n=3: [1, 8, 24, 0, -340, -2504, -19032, -189408, -2368430, ...];
n=4: [1, 15, 95, 290, 0, -5327, -46335, -409770, -4606315, ...];
n=5: [1, 24, 252, 1472, 4614, 0, -103528, -1028952, -10296567, ...];
n=6: [1, 35, 546, 4949, 27972, 90244, 0, -2388773, -26537259, ...];
n=7: [1, 48, 1040, 13376, 112344, 627280, 2083504, 0, -63579020, ...];
n=8: [1, 63, 1809, 31260, 360765, 2901258, 16172964, 55276020, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1 + n*x + n*x^2 - A(x))^(n+1) = 0, for n > 0.
ODD TERMS.
The odd terms seem to occur only at positions equal to powers of 2: a(1), a(2), a(4), a(8), a(16), ...; the odd terms begin: [1, 3, 41, 395845, 15928490898945133, 490833755530209698774408313021523960879357, ...].
RELATED SERIES.
B(x) = 1/(1 - A(x)) = 1 + x + 4*x^2 + 15*x^3 + 76*x^4 + 478*x^5 + 3868*x^6 + 39675*x^7 + 498120*x^8 + 7351430*x^9 + 123503516*x^10 + 2309531318*x^11 + ...
where [x^n] (1 + n*(x + x^2)*B(x))^(n+1) / B(x)^(n+1) = 0 for n > 0.
Series_Reversion(A(x)) = x - 3*x^2 + 10*x^3 - 56*x^4 + 268*x^5 - 2104*x^6 + 7636*x^7 - 129976*x^8 - 369988*x^9 - 19147364*x^10 - 279267684*x^11 - ...
PROG
(PARI) {a(n) = my(A=[1], m=1); for(i=1, n, A=concat(A, 0);
m=#A; A[#A] = polcoeff( (1 + m*x + m*x^2 - x*Ser(A))^(m+1), m)/(m+1) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 24 2020
STATUS
approved