The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224246 The number of n-permutations that have a unique smallest cycle and this cycle contains the element 1. 1
 1, 1, 3, 8, 41, 194, 1309, 9022, 79057, 689588, 7462601, 80632826, 1021071193, 13120783948, 192752054377, 2848878770774, 47617784530529, 800500650553472, 14910497765819137, 281133366288649138, 5803224036600349801, 120681837753825004796, 2734647516979262677673, 62424209302423879016558, 1535507329367939907583057 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..450 FORMULA E.g.f.: Sum_{k>=1} Integral_((x^(k-1)/(k-1))*exp(-Sum_{i=1..k} x^i/i)/(1-x) dx). EXAMPLE a(4) = 8 because we have the permutations of {1,2,3,4} in cycle notation: {{1}, {3,4,2}}, {{1}, {4,3,2}}, {{2,3,4,1}}, {{2,4,3,1}}, {{3,4,2,1}}, {{3,2,4,1}}, {{4,3,2,1}}, {{4,2,3,1}}. MAPLE b:= proc(n, t) option remember; `if`(n=0, 1, add((i-1)!*       binomial(n-1, i-1)*b(n-i, `if`(t=1, i+1, t)), i=t..n))     end: a:= n-> b(n, 1): seq(a(n), n=1..30);  # Alois P. Heinz, Sep 07 2020 MATHEMATICA nn=20; Drop[Range[0, nn]! CoefficientList[Series[Sum[Integrate[x^(k-1) Exp[-Sum[x^i/i, {i, 1, k}]]/(1-x), x], {k, 1, nn}], {x, 0, nn}], x], 1] CROSSREFS Cf. A224245, A224244, A224219. Sequence in context: A152394 A168468 A330527 * A128322 A337758 A038048 Adjacent sequences:  A224243 A224244 A224245 * A224247 A224248 A224249 KEYWORD nonn AUTHOR Geoffrey Critzer, Apr 01 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 21:15 EST 2022. Contains 350653 sequences. (Running on oeis4.)