login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224219
Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique.
7
1, 1, 4, 5, 31, 82, 344, 1661, 7942, 38721, 228680, 1377026, 8529756, 56756260, 402300799, 2960135917, 22692746719, 181667760724, 1516381486766, 13135566948285, 117868982320877, 1093961278908818, 10492653292100919, 103880022098900234, 1059925027073166856
OFFSET
1,3
COMMENTS
In other words, if the smallest block in a partition has size k then there are no other blocks in the partition with size k.
LINKS
FORMULA
E.g.f.: Sum_{k>=1} x^k/k! * exp(exp(x) - Sum_{i=0..k} x^i/i!).
EXAMPLE
a(4) = 5 because we have: {{1,2,3,4}}, {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}.
MAPLE
with(combinat):
b:= proc(n, i) option remember;
`if`(i<1, 0, `if`(n=i, 1, 0)+add(b(n-i*j, i-1)*
multinomial(n, n-i*j, i$j)/j!, j=0..(n-1)/i))
end:
a:= n-> b(n$2):
seq(a(n), n=1..25); # Alois P. Heinz, Jul 07 2016
MATHEMATICA
nn=25; Drop[Range[0, nn]!CoefficientList[Series[Sum[x^k/k!Exp[Exp[x]-Sum[x^i/i!, {i, 0, k}]], {k, 1, nn}], {x, 0, nn}], x], 1]
(* Second program: *)
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[i<1, 0, If[n==i, 1, 0] + Sum[b[n-i*j, i-1]*multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, (n-1)/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A372762.
Sequence in context: A124482 A265709 A265708 * A128867 A262031 A326998
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Apr 01 2013
STATUS
approved