OFFSET
1,2
COMMENTS
a(n) = numerator of Sum_{d|n} 1/A000203(d).
Are there numbers n > 1 such that Sum_{d|n} 1/sigma(d) is an integer?
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384
FORMULA
EXAMPLE
For n = 6; divisors d of 6: {1, 2, 3, 6}; sigma(d): {1, 3, 4, 12}; Sum_{d|6} 1/sigma(d) = 1/1 + 1/3 + 1/4 + 1/12 = 20/12 = 5/3; a(n) = 5.
MATHEMATICA
A265709[n_] := Numerator[DivisorSum[n, 1/DivisorSigma[1, #]&]];
Array[A265709, 100] (* Paolo Xausa, Feb 06 2024 *)
PROG
(Magma) [Numerator(&+[1/SumOfDivisors(d): d in Divisors(n)]): n in [1..1000]]
(PARI) A265709(n) = numerator(sumdiv(n, d, 1/sigma(d))); \\ Antti Karttunen, Nov 19 2017
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Dec 24 2015
STATUS
approved