login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265709
a(n) = numerator of Sum_{d|n} 1/sigma(d).
10
1, 4, 5, 31, 7, 5, 9, 54, 69, 14, 13, 155, 15, 3, 35, 1709, 19, 23, 21, 31, 45, 13, 25, 27, 223, 10, 703, 93, 31, 35, 33, 15536, 65, 38, 21, 713, 39, 7, 75, 9, 43, 15, 45, 403, 161, 25, 49, 1709, 521, 446, 95, 155, 55, 703, 91, 243, 21, 62, 61, 155, 63, 11
OFFSET
1,2
COMMENTS
a(n) = numerator of Sum_{d|n} 1/A000203(d).
Are there numbers n > 1 such that Sum_{d|n} 1/sigma(d) is an integer?
LINKS
FORMULA
a(n) = A265710(n) * Sum_{d|n} 1/sigma(d) = A265708(n) * A265710(n) / A069934(n).
a(1) = 1; a(p) = p + 2 for p = prime.
EXAMPLE
For n = 6; divisors d of 6: {1, 2, 3, 6}; sigma(d): {1, 3, 4, 12}; Sum_{d|6} 1/sigma(d) = 1/1 + 1/3 + 1/4 + 1/12 = 20/12 = 5/3; a(n) = 5.
MATHEMATICA
A265709[n_] := Numerator[DivisorSum[n, 1/DivisorSigma[1, #]&]];
Array[A265709, 100] (* Paolo Xausa, Feb 06 2024 *)
PROG
(Magma) [Numerator(&+[1/SumOfDivisors(d): d in Divisors(n)]): n in [1..1000]]
(PARI) A265709(n) = numerator(sumdiv(n, d, 1/sigma(d))); \\ Antti Karttunen, Nov 19 2017
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Dec 24 2015
STATUS
approved