login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262034
Number of permutations of [n] beginning with at least ceiling(n/2) ascents.
4
1, 0, 1, 1, 4, 5, 30, 42, 336, 504, 5040, 7920, 95040, 154440, 2162160, 3603600, 57657600, 98017920, 1764322560, 3047466240, 60949324800, 106661318400, 2346549004800, 4151586700800, 99638080819200, 177925144320000, 4626053752320000, 8326896754176000
OFFSET
0,5
LINKS
FORMULA
E.g.f.: (exp(x^2)*(x+1)-(x^4/2+x^2+x+1))/x^3.
a(n) = 2*((n^2-1)*a(n-2)-a(n-1))/(n+3) for n>3, a(0)=a(2)=a(3)=1, a(1)=0.
a(n) = n!/(n/2+1)! if n even, a(n) = floor(C(n+1,(n+1)/2)/(n+3)*((n-1)/2)!) if n odd.
a(2n) = A262033(2n) = A001761(n).
a(2n+1) = A102693(n+1).
Sum_{n>=2} 1/a(n) = (39*exp(1/4)*sqrt(Pi)*erf(1/2) - 6)/16, where erf is the error function. - Amiram Eldar, Dec 04 2022
EXAMPLE
a(4) = 4: 1234, 1243, 1342, 2341.
a(5) = 5: 12345, 12354, 12453, 13452, 23451.
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 0, 1$2][n+1],
2*((n^2-1)*a(n-2)-a(n-1))/(n+3))
end:
seq(a(n), n=0..30);
MATHEMATICA
np=Rest[With[{nn=30}, CoefficientList[Series[(Exp[x^2](x+1)-x^4/2+x^2+x+1)/ x^3, {x, 0, nn}], x] Range[0, nn]!]//Quiet]; Join[{1}, np] (* Harvey P. Dale, May 18 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 08 2015
STATUS
approved