login
A041273
Denominators of continued fraction convergents to sqrt(149).
2
1, 4, 5, 29, 92, 305, 1617, 1922, 9305, 225242, 910273, 1135515, 6587848, 20899059, 69285025, 367324184, 436609209, 2113761020, 51166873689, 206781255776, 257948129465, 1496521903101, 4747513838768, 15739063419405, 83442830935793, 99181894355198
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,227164,0,0,0,0,0,0,0,0,1).
FORMULA
G.f.: -(x^16 -4*x^15 +5*x^14 -29*x^13 +92*x^12 -305*x^11 +1617*x^10 -1922*x^9 +9305*x^8 +1922*x^7 +1617*x^6 +305*x^5 +92*x^4 +29*x^3 +5*x^2 +4*x +1) / ((x^6 +61*x^3 -1)*(x^12 -61*x^9 +3722*x^6 +61*x^3 +1)). - Colin Barker, Nov 14 2013
a(n) = 227164*a(n-9) + a(n-18). - Vincenzo Librandi, Dec 14 2013
MAPLE
convert(sqrt(149), confrac, 30, cvgts): denom(cvgts); # Wesley Ivan Hurt, Dec 22 2013
MATHEMATICA
Denominator[Convergents[Sqrt[149], 30]] (* Vincenzo Librandi, Dec 14 2013 *)
PROG
(Magma) I:=[1, 4, 5, 29, 92, 305, 1617, 1922, 9305, 225242, 910273, 1135515, 6587848, 20899059, 69285025, 367324184, 436609209, 2113761020]; [n le 18 select I[n] else 227164*Self(n-9)+Self(n-18): n in [1..40]]; // Vincenzo Librandi, Dec 14 2013
CROSSREFS
Sequence in context: A002352 A042647 A266075 * A256623 A047169 A262034
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Nov 14 2013
STATUS
approved