login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262035
Number of permutations of [2n+1] beginning with exactly n ascents.
3
1, 2, 15, 168, 2520, 47520, 1081080, 28828800, 882161280, 30474662400, 1173274502400, 49819040409600, 2313026876160000, 116576554558464000, 6338850154116480000, 369890550169620480000, 23056510960573009920000, 1529010726859052236800000
OFFSET
0,2
LINKS
FORMULA
E.g.f.: (1-2*x)/(4*sqrt(1-4*x)*x^2)+(2*x^2-1)/(4*x^2).
a(n) = 2*(n+1)*(2*n+1)*a(n-1)/(n+2) for n>1, a(n) = n+1 for n<=1.
a(n) = (2*n+1)!/(n+1)! - floor((2*n+2)!/((n+1)!*(n+1)*(n+2)*2)).
a(n) = A262033(2n+1) - A262034(2n+1).
EXAMPLE
a(0) = 1: 1.
a(1) = 2: 132, 231.
a(2) = 15: 12435, 12534, 12543, 13425, 13524, 13542, 14523, 14532, 23415, 23514, 23541, 24513, 24531, 34512, 34521.
MAPLE
a:= proc(n) option remember; `if`(n<2, n+1,
2*(n+1)*(2*n+1)*a(n-1)/(n+2))
end:
seq(a(n), n=0..20);
CROSSREFS
Sequence in context: A153852 A177396 A324151 * A264793 A228840 A117667
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 08 2015
STATUS
approved