The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A262033 Number of permutations of [n] beginning with at least floor(n/2) ascents. 5
 1, 1, 1, 3, 4, 20, 30, 210, 336, 3024, 5040, 55440, 95040, 1235520, 2162160, 32432400, 57657600, 980179200, 1764322560, 33522128640, 60949324800, 1279935820800, 2346549004800, 53970627110400, 99638080819200, 2490952020480000, 4626053752320000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..732 FORMULA E.g.f.: (x+1)*(exp(x^2)-1)/x^2. a(n) = 2*n*(n*(n-1)*a(n-2)-a(n-1))/((n+2)*(n-1)) for n>1, a(0)=a(1)=1. a(n) = n!/ceiling((n+1)/2)!. a(2n) = A262034(2n) = A001761(n). a(2n+1) = A006963(n+2). Sum_{n>=0} 1/a(n) = 7/4 + 13*exp(1/4)*sqrt(Pi)*erf(1/2)/8, where erf is the error function. - Amiram Eldar, Dec 04 2022 EXAMPLE a(4) = 4: 1234, 1243, 1342, 2341. a(5) = 20: 12345, 12354, 12435, 12453, 12534, 12543, 13425, 13452, 13524, 13542, 14523, 14532, 23415, 23451, 23514, 23541, 24513, 24531, 34512, 34521. MAPLE a:= proc(n) option remember; `if`(n<2, 1, 2*n*(n*(n-1)*a(n-2)-a(n-1))/((n+2)*(n-1))) end: seq(a(n), n=0..30); MATHEMATICA a[n_] := n!/Ceiling[(n + 1)/2]!; Array[a, 30, 0] (* Amiram Eldar, Dec 04 2022 *) CROSSREFS Cf. A001761, A006963, A262034, A262035. Sequence in context: A333320 A047165 A124631 * A062870 A226964 A222763 Adjacent sequences: A262030 A262031 A262032 * A262034 A262035 A262036 KEYWORD nonn AUTHOR Alois P. Heinz, Sep 08 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 13:18 EDT 2023. Contains 365735 sequences. (Running on oeis4.)