login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333320
a(n) is the number of subsets of {1..n} that contain exactly 4 odd and 1 even numbers.
2
0, 0, 0, 0, 0, 0, 0, 3, 4, 20, 25, 75, 90, 210, 245, 490, 560, 1008, 1134, 1890, 2100, 3300, 3630, 5445, 5940, 8580, 9295, 13013, 14014, 19110, 20475, 27300, 29120, 38080, 40460, 52020, 55080, 69768, 73644, 92055, 96900, 119700, 125685, 153615, 160930, 194810, 203665
OFFSET
0,8
COMMENTS
The general formula for the number of subsets of {1..n} that contain exactly k odd and j even numbers is binomial(ceiling(n/2), k) * binomial(floor(n/2), j).
LINKS
FORMULA
a(n) = binomial(ceiling(n/2),4) * floor(n/2).
From Colin Barker, Mar 17 2020: (Start)
G.f.: x^7*(3 + x + x^2) / ((1 - x)^6*(1 + x)^5).
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)
EXAMPLE
a(8)=4 and the 4 subsets are {1,2,3,5,7}, {1,3,4,5,7}, {1,3,5,6,7}, {1,3,5,7,8}.
MATHEMATICA
Array[Binomial[Ceiling[#], 4] Binomial[Floor[#], 1] &[#/2] &, 47, 0] (* Michael De Vlieger, Mar 14 2020 *)
PROG
(PARI) concat([0, 0, 0, 0, 0, 0, 0], Vec(x^7*(3 + x + x^2) / ((1 - x)^6*(1 + x)^5) + O(x^50))) \\ Colin Barker, Mar 17 2020
CROSSREFS
Cf. A333321.
Sequence in context: A051719 A336619 A240970 * A047165 A124631 A262033
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Mar 14 2020
STATUS
approved