login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of subsets of {1..n} that contain exactly 4 odd and 1 even numbers.
2

%I #17 May 01 2020 22:58:18

%S 0,0,0,0,0,0,0,3,4,20,25,75,90,210,245,490,560,1008,1134,1890,2100,

%T 3300,3630,5445,5940,8580,9295,13013,14014,19110,20475,27300,29120,

%U 38080,40460,52020,55080,69768,73644,92055,96900,119700,125685,153615,160930,194810,203665

%N a(n) is the number of subsets of {1..n} that contain exactly 4 odd and 1 even numbers.

%C The general formula for the number of subsets of {1..n} that contain exactly k odd and j even numbers is binomial(ceiling(n/2), k) * binomial(floor(n/2), j).

%H Colin Barker, <a href="/A333320/b333320.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).

%F a(n) = binomial(ceiling(n/2),4) * floor(n/2).

%F From _Colin Barker_, Mar 17 2020: (Start)

%F G.f.: x^7*(3 + x + x^2) / ((1 - x)^6*(1 + x)^5).

%F a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) - 10*a(n-4) + 10*a(n-5) + 10*a(n-6) - 10*a(n-7) - 5*a(n-8) + 5*a(n-9) + a(n-10) - a(n-11) for n>10.

%F (End)

%e a(8)=4 and the 4 subsets are {1,2,3,5,7}, {1,3,4,5,7}, {1,3,5,6,7}, {1,3,5,7,8}.

%t Array[Binomial[Ceiling[#], 4] Binomial[Floor[#], 1] &[#/2] &, 47, 0] (* _Michael De Vlieger_, Mar 14 2020 *)

%o (PARI) concat([0,0,0,0,0,0,0], Vec(x^7*(3 + x + x^2) / ((1 - x)^6*(1 + x)^5) + O(x^50))) \\ _Colin Barker_, Mar 17 2020

%Y Cf. A333321.

%K nonn,easy

%O 0,8

%A _Enrique Navarrete_, Mar 14 2020