login
A265713
Numbers k such that floor(Sum_{d|k} 1 / sigma(d)) = 3.
9
110880, 166320, 221760, 277200, 327600, 332640, 360360, 388080, 393120, 415800, 443520, 471240, 480480, 491400, 498960, 526680, 540540, 554400, 556920, 582120, 589680, 600600, 622440, 637560, 655200, 665280, 693000, 720720, 776160, 786240, 803880, 831600
OFFSET
1,1
COMMENTS
Numbers k such that A265710(k) = floor(A265708(k) / A069934(k)) = floor(A265709(k) / A265710(k)) = 3.
See A265714(n) = the smallest number k such that floor(Sum_{d|k} 1/sigma(d)) = n.
LINKS
EXAMPLE
110880 is a term because floor(Sum_{d|110880} 1/sigma(d)) = floor(22333/7440) = 3.
MATHEMATICA
Select[Range[10^5, 9*10^5], Floor[Sum[1/DivisorSigma[1, d], {d, Divisors@ #}]] == 3 &] (* Michael De Vlieger, Dec 31 2015 *)
PROG
(Magma) [n: n in [1..1000000] | Floor(&+[1/SumOfDivisors(d): d in Divisors(n)]) eq 3]
(PARI) isok(n) = floor(sumdiv(n, d, 1/sigma(d))) == 3; \\ Michel Marcus, Dec 27 2015
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2015
STATUS
approved