login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265716
a(n) = n IMPL (2*n), where IMPL is the bitwise logical implication.
3
0, 2, 5, 6, 11, 10, 13, 14, 23, 22, 21, 22, 27, 26, 29, 30, 47, 46, 45, 46, 43, 42, 45, 46, 55, 54, 53, 54, 59, 58, 61, 62, 95, 94, 93, 94, 91, 90, 93, 94, 87, 86, 85, 86, 91, 90, 93, 94, 111, 110, 109, 110, 107, 106, 109, 110, 119, 118, 117, 118, 123, 122
OFFSET
0,2
COMMENTS
The scatterplot exhibits fractal qualities. - Bill McEachen, Dec 27 2022
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..8191 <= 2^13-1
Eric Weisstein's World of Mathematics, Implies
FORMULA
a(n) = A265705(2*n,n): central terms of triangle A265705;
a(A247648(n)) = 2*A247648(n).
a(n)= bitor(A003817(n)-n, 2*n) (conjectured). - Bill McEachen, Dec 13 2021
2n <= a(n) <= 3n. - Charles R Greathouse IV, Jan 20 2023
EXAMPLE
. 2*21=42 | 101010 2*6=12 | 1100
. 21 | 10101 6 | 110
. -----------+------- ----------+-----
. 21 IMPL 42 | 101010 -> a(21) = 42 6 IMPL 12 | 1101 -> a(6) = 13 .
MAPLE
A265716 := n -> Bits:-Implies(n, 2*n):
seq(A265716(n), n=0..61); # Peter Luschny, Sep 23 2019
MATHEMATICA
IMPL[n_, k_] := If[n == 0, 0, BitOr[2^Length[IntegerDigits[k, 2]]-1-n, k]];
a[n_] := n ~IMPL~ (2n);
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 16 2021 *)
PROG
(Haskell)
a265716 n = n `bimpl` (2 * n) where
bimpl 0 0 = 0
bimpl p q = 2 * bimpl p' q' + if u <= v then 1 else 0
where (p', u) = divMod p 2; (q', v) = divMod q 2
(PARI) a(n)=bitor(bitneg(n, exponent(n)+1), 2*n) \\ Charles R Greathouse IV, Jan 20 2023
CROSSREFS
KEYWORD
nonn,look,easy
AUTHOR
Reinhard Zumkeller, Dec 15 2015
STATUS
approved