login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248616
Least number k such that k^k in base n contains all n possible digits.
0
1, 2, 5, 6, 11, 9, 9, 13, 16, 19, 16, 27, 19, 29, 33, 35, 36, 41, 36, 38, 41, 34, 40, 55, 56, 62, 73, 65, 67, 62, 70, 77, 77, 74, 76, 95, 92, 103, 97, 91, 89, 108, 96, 93, 104, 118, 117, 105, 125, 126, 132, 112, 137, 145, 132, 144, 147, 126, 138, 168, 141, 122, 165, 185, 166, 170, 187, 186
OFFSET
1,2
COMMENTS
a(n) is the right diagonal of the triangular array in A239306. Equivalently, a(n) = T(n,n) in A239306.
MATHEMATICA
Join[{1}, Table[Module[{k=1}, While[Union[IntegerDigits[k^k, n]]!=Range[0, n-1], k++]; k], {n, 2, 70}]] (* Harvey P. Dale, Jul 29 2018 *)
PROG
(PARI)
a(n, b)=k=1; while(#vecsort(digits(k^k, b), , 8)!=n, if(#digits(k^k)>10^(n\2), return(0)); k++); k
print1(1, ", "); b=2; while(b<1000, print1(a(b, b), ", "); b++)
CROSSREFS
Cf. A239306.
Sequence in context: A015891 A238146 A160645 * A341522 A265716 A376762
KEYWORD
nonn,base
AUTHOR
Derek Orr, Oct 09 2014
STATUS
approved