login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248617
Decimal expansion of the solution when Gudermannian(x) equals 1.
1
1, 2, 2, 6, 1, 9, 1, 1, 7, 0, 8, 8, 3, 5, 1, 7, 0, 7, 0, 8, 1, 3, 0, 6, 0, 9, 6, 7, 4, 7, 1, 9, 0, 6, 7, 5, 2, 7, 2, 4, 2, 4, 8, 3, 5, 0, 2, 2, 0, 7, 4, 0, 2, 7, 9, 1, 3, 8, 6, 1, 6, 8, 4, 3, 5, 4, 2, 9, 8, 4, 6, 7, 6, 2, 4, 4, 2, 8, 0, 3, 8, 1, 6, 9, 2, 3, 7, 4, 2, 5, 6, 3, 7, 7, 9, 6, 6, 0, 9, 5, 3, 3, 4, 6, 9
OFFSET
1,2
COMMENTS
Inverse of A248618.
FORMULA
Equals log(tan((2+Pi)/4)). - Vaclav Kotesovec, Oct 11 2014
From Amiram Eldar, Apr 07 2022: (Start)
Equals 2*arctanh(tan(1/2)).
Equals Integral_{x=0..1} sec(x) dx. (End)
EXAMPLE
1.22619117088351707081306096747190675272424835022074027913861684354298467624428...
MAPLE
evalf(log(tan((2+Pi)/4)), 100) # Vaclav Kotesovec, Oct 11 2014
MATHEMATICA
RealDigits[ InverseGudermannian[ 1], 10, 111][[1]]
CROSSREFS
Cf. A248618.
Sequence in context: A155818 A010245 A154196 * A225975 A016529 A077894
KEYWORD
nonn,cons
AUTHOR
Robert G. Wilson v, Oct 09 2014
STATUS
approved