login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269966
Integers n such that the n-th golden rectangle number is the sum of 2 nonzero squares.
0
2, 5, 6, 11, 12, 13, 14, 25, 26, 37, 38, 61, 62, 73, 74, 85, 86, 97, 98, 121, 122, 133, 134, 145, 146, 157, 158, 181, 182, 221, 222, 253, 254, 325, 326, 337, 338, 365, 366, 397, 398, 445, 446, 613, 614, 625, 626, 697, 698, 721, 722, 793, 794, 865, 866
OFFSET
1,1
COMMENTS
Corresponding golden rectangle numbers are 2, 40, 104, 12816, 33552, 87841, 229970, 9107509825, 23843770274, 944284833567073, 2472169789339634, ...
Initial terms of first differences are 3, 1, 5, 1, 1, 1, 11, 1, 11, 1, 23, 1, 11, 1, 11, 1, 11, 1, 23, ...
EXAMPLE
5 is a term because 1^2 + 1^2 + 2^2 + 3^2 + 5^2 = 5*8 = 40 = 2^2 + 6^2.
6 is a term because 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 = 8*13 = 104 = 2^2 + 10^2.
MATHEMATICA
Rest@ Select[Range@ 200, SquaresR[2, #] > 0 &[Fibonacci[#] Fibonacci[# + 1]] &] (* Michael De Vlieger, Mar 09 2016 *)
PROG
(PARI) isA000404(n)= for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))
a001654(n) = fibonacci(n)*fibonacci(n+1);
for(n=1, 1e2, if(isA000404(a001654(n)), print1(n, ", ")));
(PARI) has(f)=for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(0))); 1
isA009003(f)=for(i=1, #f~, if(f[i, 1]%4==1, return(1))); 0
is(n)=my(f, g); has(f=factor(fibonacci(n))) && has(g=factor(fibonacci(n+1))) && (n%3!=1 || isA009003(f) || isA009003(g)) \\ Charles R Greathouse IV, Mar 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 08 2016
EXTENSIONS
a(36)-a(55) from Charles R Greathouse IV, Mar 08 2016
STATUS
approved