OFFSET
1,1
COMMENTS
Corresponding golden rectangle numbers are 2, 40, 104, 12816, 33552, 87841, 229970, 9107509825, 23843770274, 944284833567073, 2472169789339634, ...
Initial terms of first differences are 3, 1, 5, 1, 1, 1, 11, 1, 11, 1, 23, 1, 11, 1, 11, 1, 11, 1, 23, ...
EXAMPLE
5 is a term because 1^2 + 1^2 + 2^2 + 3^2 + 5^2 = 5*8 = 40 = 2^2 + 6^2.
6 is a term because 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 = 8*13 = 104 = 2^2 + 10^2.
MATHEMATICA
Rest@ Select[Range@ 200, SquaresR[2, #] > 0 &[Fibonacci[#] Fibonacci[# + 1]] &] (* Michael De Vlieger, Mar 09 2016 *)
PROG
(PARI) isA000404(n)= for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))
a001654(n) = fibonacci(n)*fibonacci(n+1);
for(n=1, 1e2, if(isA000404(a001654(n)), print1(n, ", ")));
(PARI) has(f)=for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(0))); 1
isA009003(f)=for(i=1, #f~, if(f[i, 1]%4==1, return(1))); 0
is(n)=my(f, g); has(f=factor(fibonacci(n))) && has(g=factor(fibonacci(n+1))) && (n%3!=1 || isA009003(f) || isA009003(g)) \\ Charles R Greathouse IV, Mar 08 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 08 2016
EXTENSIONS
a(36)-a(55) from Charles R Greathouse IV, Mar 08 2016
STATUS
approved