login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique.
7

%I #23 May 13 2024 15:12:52

%S 1,1,4,5,31,82,344,1661,7942,38721,228680,1377026,8529756,56756260,

%T 402300799,2960135917,22692746719,181667760724,1516381486766,

%U 13135566948285,117868982320877,1093961278908818,10492653292100919,103880022098900234,1059925027073166856

%N Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique.

%C In other words, if the smallest block in a partition has size k then there are no other blocks in the partition with size k.

%H Alois P. Heinz, <a href="/A224219/b224219.txt">Table of n, a(n) for n = 1..576</a>

%F E.g.f.: Sum_{k>=1} x^k/k! * exp(exp(x) - Sum_{i=0..k} x^i/i!).

%e a(4) = 5 because we have: {{1,2,3,4}}, {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}.

%p with(combinat):

%p b:= proc(n, i) option remember;

%p `if`(i<1, 0, `if`(n=i, 1, 0)+add(b(n-i*j, i-1)*

%p multinomial(n, n-i*j, i$j)/j!, j=0..(n-1)/i))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=1..25); # _Alois P. Heinz_, Jul 07 2016

%t nn=25;Drop[Range[0,nn]!CoefficientList[Series[Sum[x^k/k!Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],{k,1,nn}],{x,0,nn}],x],1]

%t (* Second program: *)

%t multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[i<1, 0, If[n==i, 1, 0] + Sum[b[n-i*j, i-1]*multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, (n-1)/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 25}] (* _Jean-François Alcover_, Feb 03 2017, after _Alois P. Heinz_ *)

%Y Cf. A224244, A372721, A372802.

%Y Column k=1 of A372762.

%K nonn

%O 1,3

%A _Geoffrey Critzer_, Apr 01 2013