login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224244
Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique and it contains the element 1.
4
1, 1, 2, 2, 9, 17, 63, 261, 1088, 4374, 24583, 133861, 740303, 4514824, 29945555, 205127474, 1464586617, 10971233035, 86410874373, 708423380237, 6026435657580, 53117555943951, 485246803230148, 4589013046619689, 44819208415713035, 451184268041122808
OFFSET
1,3
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; page 139.
FORMULA
E.g.f.: Sum_{k>=1} Integral of x^(k-1)/(k-1)! * exp(exp(x) - Sum_{i=0..k} x^i/i!) dx.
EXAMPLE
a(5) = 9 because we have: {{1,2,3,4,5}}, {{1},{2,3,4,5}}, {{1,2},{3,4,5}}, {{1,3},{2,4,5}}, {{1,5},{2,3,4}}, {{1,4},{2,3,5}}, {{1},{2,3},{4,5}}, {{1},{2,5},{3,4}}, {{1},{2,4},{3,5}}.
MAPLE
b:= proc(n, t) option remember; `if`(n=0, 1, add(
binomial(n-1, i-1)*b(n-i, `if`(t=1, i+1, t)), i=t..n))
end:
a:= n-> `if`(n=0, 0, b(n, 1)):
seq(a(n), n=1..30); # Alois P. Heinz, Jul 07 2016
MATHEMATICA
nn=20; Drop[Range[0, nn]!CoefficientList[Series[Sum[Integrate[x^(k-1)/(k-1)! Exp[Exp[x]-Sum[x^i/i!, {i, 0, k}]], x], {k, 1, nn}], {x, 0, nn}], x], 1]
(* Second program: *)
b[n_, t_] := b[n, t] = If[n==0, 1, Sum[Binomial[n-1, i-1]*b[n-i, If[t==1, i + 1, t]], {i, t, n}]]; a[n_] := If[n==0, 0, b[n, 1]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A224219.
Sequence in context: A309705 A290604 A039796 * A007024 A019223 A192302
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Apr 01 2013
STATUS
approved