login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309705
a(n) = lcm(a(n-1), n) - gcd(a(n-1), n) where a(1) = 1.
1
1, 1, 2, 2, 9, 15, 104, 96, 285, 565, 6214, 37282, 484665, 6785309, 101779634, 814237070, 13842030189, 83052181131, 1577991441488, 7889957207436, 55229700452049, 1215053409945077, 27946228428736770, 111784913714947074, 2794622842873676849, 72660193914715598073
OFFSET
1,3
COMMENTS
The sequence seems to grow between exponentially and factorially but that's just a suspicion.
LINKS
FORMULA
a(n) = lcm(a(n-1), n) - gcd(a(n-1), n) for n > 1.
EXAMPLE
For n = 5, since a(4) = 2, a(5) = lcm(5,2) - gcd(5,2) = 10 - 1 = 9.
MAPLE
a:= proc(n) option remember; `if`(n=1, 1,
ilcm(a(n-1), n)-igcd(a(n-1), n))
end:
seq(a(n), n=1..29); # Alois P. Heinz, Sep 17 2019
MATHEMATICA
a[1] = 1; a[n_] := a[n] = LCM[a[n - 1], n] - GCD[a[n - 1], n]; Array[a, 26] (* Amiram Eldar, Sep 17 2019 *)
nxt[{n_, a_}]:={n+1, LCM[a, n+1]-GCD[a, n+1]}; NestList[nxt, {1, 1}, 30][[All, 2]] (* Harvey P. Dale, Apr 05 2020 *)
PROG
(Python)
def lcmMinusGcd(n):
retlist = [1]
for i in range(1, n):
g = gcd(retlist[i-1], i+1)
retlist.append( floor(retlist[i-1]*(i+1) / g) - g)
return ', '.join(map(str, retlist))
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n] = lcm(v[n-1], n) - gcd(v[n-1], n)); v} \\ Andrew Howroyd, Aug 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Atticus Cull, Aug 13 2019
STATUS
approved