login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185755
Triangle: T(n,k) equals the coefficient of x^n*y^k in the n-th iteration of x*(1+xy)/(1-x), for n>=1, 0<=k<n, as read by rows.
5
1, 2, 2, 9, 15, 6, 64, 154, 120, 30, 625, 1995, 2340, 1190, 220, 7776, 31191, 49315, 38325, 14595, 2170, 117649, 571221, 1142932, 1204588, 704102, 215950, 27076, 2097152, 11992688, 29141994, 38972388, 30945432, 14570976, 3761310, 409836
OFFSET
1,2
FORMULA
T(n,0) = A000169(n) = n^(n-1).
T(n,n) = A112317(n).
Sum_{k=0..n-1} T(n,k) = A185523(n).
Sum_{k=0..n-1} (-1)^k*T(n,k) = 0^n.
EXAMPLE
Triangle begins:
1;
2, 2;
9, 15, 6;
64, 154, 120, 30;
625, 1995, 2340, 1190, 220;
7776, 31191, 49315, 38325, 14595, 2170;
117649, 571221, 1142932, 1204588, 704102, 215950, 27076;
2097152, 11992688, 29141994, 38972388, 30945432, 14570976, 3761310, 409836;
43046721, 283976517, 814059798, 1323693384, 1334427720, 853356072, 337738758, 75550188, 7303164; ...
PROG
(PARI) {T(n, k)=local(A=x, G=x*(1+x*y)/(1-x)); for(i=1, n, A=subst(G, x, A+x*O(x^n))); polcoeff(polcoeff(A, n, x), k, y)}
CROSSREFS
Cf. columns: A000169, A185756, A185757; row sums: A185523.
Cf. diagonals: A112317, A185758, A185759.
Sequence in context: A143146 A298663 A325936 * A278458 A309705 A290604
KEYWORD
tabl,nonn
AUTHOR
Paul D. Hanna, Feb 03 2011
STATUS
approved