OFFSET
1,3
FORMULA
Let F(x) be the g.f. of A185753, then g.f. A(x) satisfies:
* A(x) = x + (F(x)-1)^2,
* A(x) = x*F(A(x)),
* A(x) = Series_Reversion(x/F(x)).
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 7*x^4 + 36*x^5 + 243*x^6 +...
A(A(x)) = x + 2*x^2 + 6*x^3 + 25*x^4 + 136*x^5 + 922*x^6 + 7524*x^7 +...
The g.f. of A185753 begins:
F(x) = 1 + x + x^2 + 3*x^3 + 15*x^4 + 102*x^5 + 861*x^6 + 8593*x^7 +...
where
(F(x)-1)^2 = x^2 + 2*x^3 + 7*x^4 + 36*x^5 + 243*x^6 + 2016*x^7 +...
F(A(x)) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 243*x^5 + 2016*x^6 +...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=2*A-x-(x/serreverse(A+x*O(x^n))-1)^2); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 02 2011
STATUS
approved