login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029768
Number of increasing mobiles with n elements.
14
0, 1, 1, 2, 7, 36, 245, 2076, 21059, 248836, 3356609, 50896380, 856958911, 15864014388, 320245960333, 7001257954796, 164792092647355, 4154906594518116, 111719929072986521, 3191216673497748444
OFFSET
0,4
COMMENTS
A labeled tree of size n is a rooted tree on n nodes that are labeled by distinct integers from the set {1,...,n}. An increasing tree is a labeled tree such that the sequence of labels along any branch starting at the root is increasing.
a(n) counts increasing trees with cyclically ordered branches.
a(n+1) counts the non-plane (where the subtrees stemming from a node are not ordered between themselves) increasing trees on n nodes where the nodes of outdegree k come in k+1 colors. An example is given below. The number of plane increasing trees on n nodes where the nodes of outdegree k come in k+1 colors is given by the triple factorial numbers A008544. - Peter Bala, Aug 30 2011
a(n+1)/a(n)/n tends to 1/A073003 = 1.676875... . - Vaclav Kotesovec, Mar 11 2014
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 392.
LINKS
C. G. Bower, Transforms
C. G. Bower, Transforms (2)
F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
Sergey Fomin and Grigory Mikhalkin, Labeled floor diagrams for plane curves, arXiv:0906.3828 [math.AG], 2009-2010.
FORMULA
Bergeron et al. give several formulas. Shifts left under "CIJ" (necklace, indistinct, labeled) transform.
E.g.f.: A(x) =
x + (1/2)*x^2 + (1/3)*x^3 + (7/24)*x^4 + (3/10)*x^5 + (49/144)*x^6 + (173/420)*x^7 + (21059/40320)*x^8 + (8887/12960)*x^9 + ...
and satisfies the differential equation A'(x)=log(1/(1-A(x)))+1. - Vladimir Kruchinin, Jan 22 2011
E.g.f. A(x) satisfies: A''(x) = A'(x) * exp(A'(x)-1). - Paul D. Hanna, Apr 17 2015
From Robert Israel, Apr 17 2015 (Start):
E.g.f. A(x) satisfies e*(Ei(1,A'(x)) - Ei(1,1)) = integral(s = 1 .. A'(x), exp(1-s)/s ds) = -x.
a(n) = e^(1-n)*limit(w -> 1, (d^(n-2)/dw^(n-2))(((w-1)/(Ei(1,1)-Ei(1,w)))^(n-1))) for n >= 2. (End)
a(n) = sum(i=1..n-2,binomial(n-2,i)*a(i)*a(n-i))+a(n-1), a(0)=0, a(1)=1. - Vladimir Kruchinin, Jan 24 2011
The following remarks refer to the interpretation of this sequence as counting increasing trees where the nodes of outdegree k come in k+1 colors. Thus we work with the generating function B(x) = A'(x)-1 = x + 2*x^2/2!+7*x^3/3!+36*x^4/4!+.... The degree function phi(x) (see [Bergeron et al.] for definition) for this variety of trees is phi(x) = 1+2*x+3*x^2/2!+4*x^3/3!+5*x^4/4!+... = (1+x)*exp(x). The generating function B(x) satisfies the autonomous differential equation B' = phi(B(x)) with initial condition B(0) = 0. It follows that the inverse function B(x)^(-1) may be expressed as an integral B(x)^(-1) = int {t = 0..x} 1/phi(t) dt = int {t = 0..x} exp(-t)/(1+t) dt. Applying [Dominici, Theorem 4.1] to invert the integral produces the result B(x) = sum {n>=1} D^(n-1)[(1+x)*exp(x)](0)*x^n/n!, where the nested derivative D^n[f](x) of a function f(x) is defined recursively as D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. Thus a(n+1) = D^(n-1)[(1+x)*exp(x)](0). - Peter Bala, Aug 30 2011
EXAMPLE
a(4) = 7: D^2[(1+x)*exp(x)] = exp(2*x)*(2*x^2+8*x+7). Evaluated at x = 0 this gives a(4) = 7. Denote the colors of the nodes by the letters a,b,c,.... The 7 possible trees on 3 nodes with nodes of outdegree k coming in k+1 colors are:
........................................................
...1a....1b....1a....1b........1a.......1b........1c....
...|.....|.....|.....|......../.\....../..\....../..\...
...2a....2b....2b....2a......2...3....2....3....2....3..
...|.....|.....|.....|..................................
...3.....3.....3.....3..................................
G.f. = x + x^2 + 2*x^3 + 7*x^4 + 36*x^5 + 245*x^6 + 2076*x^7 + 21059*x^8 + ...
MAPLE
S:= rhs(dsolve({diff(a(x), x) = log(1/(1-a(x)))+1, a(0)=0}, a(x), series, order=101)):
seq(coeff(S, x, j)*j!, j=0..100); # Robert Israel, Apr 17 2015
MATHEMATICA
Multinomial1[list_] := Apply[Plus, list]!/Apply[Times, (#1! & ) /@ list]; a[1]=1; a[n_]/; n>=2 := a[n] = Sum[Map[Multinomial1[ # ]Product[Map[a, # ]]/Length[ # ]&, Compositions[n-1]]]; Table[a[n], {n, 8}] (* David Callan, Nov 29 2007 *)
nmax=20; b = ConstantArray[0, nmax]; b[[1]]=0; b[[2]]=1; Do[b[[n+1]] = b[[n]] + Sum[Binomial[n-2, i]*b[[i+1]]*b[[n-i+1]], {i, 1, n-2}], {n, 2, nmax-1}]; b (* Vaclav Kotesovec after Vladimir Kruchinin, Mar 11 2014 *)
terms = 20; A[x_] := x; Do[A[x_] = Integrate[(1 + A[x])*Exp[A[x] + O[x]^j], x] + O[x]^j // Normal // Simplify, {j, 1, terms - 1}]; Join[{0, 1}, CoefficientList[A[x], x]*Range[0, terms - 2]! // Rest] (* Jean-François Alcover, May 22 2014, updated Jan 12 2018 (after PARI script by Michael Somos) *)
PROG
(PARI) {a(n) = my(A = x + O(x^2)); if( n<2, n==1, n--; for(k=1, n-1, A = intformal( (1 + A) * exp(A))); n! * polcoeff(A, n))}; /* Michael Somos, Apr 17 2015 */
for(n=1, 30, print1(a(n), ", "))
(PARI)
seq(N) = {
my(a = vector(N)); a[1] = 1;
for (n = 2, N, a[n] = a[n-1] + sum(k=1, n-2, binomial(n-2, k)*a[k]*a[n-k]));
concat(0, a);
};
seq(19)
\\ test: N=200; y=serconvol(Ser(seq(N), 'x), exp('x+O('x^N))); y' == y''*(1-y)
\\ Gheorghe Coserea, Jun 26 2018
CROSSREFS
KEYWORD
nonn,easy,eigen,nice
AUTHOR
N. J. A. Sloane, Dec 11 1999
EXTENSIONS
More terms from Christian G. Bower
STATUS
approved