login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167199
First column of A167196.
2
1, -2, 7, -36, 246, -2100, 21510, -257040, 3510360, -53933040, 920694600, -17288964000, 354169292400, -7859862410400, 187846741882800, -4810116703392000, 131382125482608000, -3812816394747360000, 117159925012065936000, -3800085546956707008000, 129743036125975752480000
OFFSET
0,2
COMMENTS
Limiting ratio 2+n*a(n-1)/a(n) converges to A002193.
FORMULA
Conjecture: E.g.f.: 2/(2+4*x+x^2) = G(0)/(1+x) where G(k) = 1 - x/((1+x) - x*(1+x)/(x - (1+x)*2/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 28 2012.
a(n) ~ n! * (-1)^n * (1+sqrt(2))/2 * (1+1/sqrt(2))^n. - Vaclav Kotesovec, Oct 08 2013
MATHEMATICA
CoefficientList[Series[2/(2+4*x+x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
CROSSREFS
Sequence in context: A095793 A029768 A180271 * A007889 A125033 A034430
KEYWORD
sign
AUTHOR
Mats Granvik, Oct 30 2009
EXTENSIONS
More terms from Amiram Eldar, May 05 2024
STATUS
approved