login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First column of A167196.
2

%I #12 May 05 2024 01:47:37

%S 1,-2,7,-36,246,-2100,21510,-257040,3510360,-53933040,920694600,

%T -17288964000,354169292400,-7859862410400,187846741882800,

%U -4810116703392000,131382125482608000,-3812816394747360000,117159925012065936000,-3800085546956707008000,129743036125975752480000

%N First column of A167196.

%C Limiting ratio 2+n*a(n-1)/a(n) converges to A002193.

%F Conjecture: E.g.f.: 2/(2+4*x+x^2) = G(0)/(1+x) where G(k) = 1 - x/((1+x) - x*(1+x)/(x - (1+x)*2/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Dec 28 2012.

%F a(n) ~ n! * (-1)^n * (1+sqrt(2))/2 * (1+1/sqrt(2))^n. - _Vaclav Kotesovec_, Oct 08 2013

%t CoefficientList[Series[2/(2+4*x+x^2), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 08 2013 *)

%Y Cf. A167196, A002193.

%K sign

%O 0,2

%A _Mats Granvik_, Oct 30 2009

%E More terms from _Amiram Eldar_, May 05 2024