OFFSET
6,1
COMMENTS
For every n >= 7, a(n) - a(n - 1) is 1 or prime. This Rowland-like "generator of primes" is different from A106108 (see comment to A167168) and from A167170. Note that, lim sup a(n) / n = 2, while lim sup A106108(n) / n = lim sup A167170(n) / n = 3.
Going up to a million, differences of two consecutive terms of this sequence gives primes about 0.009% of the time. The rest are 1's. [Alonso del Arte, Nov 30 2009]
LINKS
G. C. Greubel, Table of n, a(n) for n = 6..1000
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, 11 (2008), Article 08.2.8.
Vladimir Shevelev, An infinite set of generators of primes based on the Rowland idea and conjectures concerning twin primes, arXiv:0910.4676 [math.NT], 2009.
MAPLE
A[6]:= 7:
for n from 7 to 100 do A[n]:= A[n-1] + igcd(n, A[n-1]) od:
seq(A[i], i=6..100); # Robert Israel, Jun 05 2016
MATHEMATICA
a[6] = 7; a[n_ /; n > 6] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; Table[a[n], {n, 6, 58}]
PROG
(Python)
from math import gcd
def aupton(nn):
alst = [7]
for n in range(7, nn+1): alst.append(alst[-1] + gcd(n, alst[-1]))
return alst
print(aupton(68)) # Michael S. Branicky, Jul 14 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 30 2009, Nov 06 2009
EXTENSIONS
Verified and edited by Alonso del Arte, Nov 30 2009
STATUS
approved