OFFSET
1,1
COMMENTS
Conjecture. Each term of the sequence is the greater of a pair of twin primes (A006512).
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol.11(2008), Article 08.2.8. arXiv:0710.3217 [math.NT]
V. Shevelev, An infinite set of generators of primes based on the Rowland idea and conjectures concerning twin primes, arXiv:0910.4676 [math.NT], 2009.
V. Shevelev, Three theorems on twin primes, arXiv:0911.5478 [math.NT], 2009-2010.
MATHEMATICA
Reap[Print[old = r = 2]; Sow[old]; For[n = 2, n <= 10^6, n++, d = GCD[old, If[OddQ[n], n-2, n]]; If[d>r, r=d; Print[d]; Sow[d]]; old += d]][[2, 1]] (* Jean-François Alcover, Nov 03 2018, from PARI *)
PROG
(PARI) print1(old=r=2); for(n=2, 1e11, d=gcd(old, if(n%2, n-2, n)); if(d>r, r=d; print1(", "d)); old+=d) \\ Charles R Greathouse IV, Oct 13 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 24 2009, Nov 05 2009
EXTENSIONS
6 more terms from R. J. Mathar, Nov 19 2009; extension beginning with a(19) from Benoit Cloitre (private communication to Vladimir Shevelev)
a(25), a(26) from D. S. McNeil, Dec 13 2010
a(27)-a(30) from Charles R Greathouse IV, Oct 13 2017
a(31)-a(35) from Charles R Greathouse IV, Oct 17 2017
STATUS
approved