OFFSET
0,1
COMMENTS
a(n) = ((n*...*(n+4))+(n+...+(n+4)))/5, n >= 0.
Binomial transform of 2, 25, 96, 144, 96, 24, 0, 0, 0, 0, ....
Partial sums of A062938 where initial term 1 is replaced by 2.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = (n^5 + 10n^4 + 35n^3 + 50n^2 + 29n + 10)/5. - Charles R Greathouse IV, Nov 02 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24 for n > 4; a(0)=2, a(1)=27, a(2)=148, a(3)=509, a(4)=1350. - Klaus Brockhaus, Nov 14 2009
G.f.: (2+15*x+16*x^2-14*x^3+6*x^4-x^5)/(1-x)^6. - Klaus Brockhaus, Nov 14 2009
EXAMPLE
a(0) = (0*1*2*3*4 + 0 + 1 + 2 + 3 + 4)/5 = (0 + 10)/5 = 2.
a(1) = (1*2*3*4*5 + 1 + 2 + 3 + 4 + 5)/5 = (120 + 15)/5 = 27.
MATHEMATICA
Table[((n+4)*(n+3)*(n+2)*(n+1)*n+(n+4)+(n+3)+(n+2)+(n+1)+n)/5, {n, 0, 100}]
(Total[#]+Times@@#)/5&/@Partition[Range[0, 100], 5, 1] (* Harvey P. Dale, Mar 05 2011 *)
PROG
(Magma) [ (&*s + &+s)/5 where s is [n..n+4]: n in [0..29] ]; // Klaus Brockhaus, Nov 14 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Oct 24 2009
EXTENSIONS
Edited and offset corrected by Klaus Brockhaus, Nov 14 2009
STATUS
approved