login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166942
One fifth of product plus sum of five consecutive nonnegative numbers.
4
2, 27, 148, 509, 1350, 3031, 6056, 11097, 19018, 30899, 48060, 72085, 104846, 148527, 205648, 279089, 372114, 488395, 632036, 807597, 1020118, 1275143, 1578744, 1937545, 2358746, 2850147, 3420172, 4077893, 4833054, 5696095
OFFSET
0,1
COMMENTS
a(n) = ((n*...*(n+4))+(n+...+(n+4)))/5, n >= 0.
Binomial transform of 2, 25, 96, 144, 96, 24, 0, 0, 0, 0, ....
Partial sums of A062938 where initial term 1 is replaced by 2.
LINKS
FORMULA
a(n) = (n^5 + 10n^4 + 35n^3 + 50n^2 + 29n + 10)/5. - Charles R Greathouse IV, Nov 02 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24 for n > 4; a(0)=2, a(1)=27, a(2)=148, a(3)=509, a(4)=1350. - Klaus Brockhaus, Nov 14 2009
G.f.: (2+15*x+16*x^2-14*x^3+6*x^4-x^5)/(1-x)^6. - Klaus Brockhaus, Nov 14 2009
EXAMPLE
a(0) = (0*1*2*3*4 + 0 + 1 + 2 + 3 + 4)/5 = (0 + 10)/5 = 2.
a(1) = (1*2*3*4*5 + 1 + 2 + 3 + 4 + 5)/5 = (120 + 15)/5 = 27.
MATHEMATICA
Table[((n+4)*(n+3)*(n+2)*(n+1)*n+(n+4)+(n+3)+(n+2)+(n+1)+n)/5, {n, 0, 100}]
(Total[#]+Times@@#)/5&/@Partition[Range[0, 100], 5, 1] (* Harvey P. Dale, Mar 05 2011 *)
PROG
(Magma) [ (&*s + &+s)/5 where s is [n..n+4]: n in [0..29] ]; // Klaus Brockhaus, Nov 14 2009
CROSSREFS
Cf. A001477 (nonnegative integers), A062938 (squares of the form n(n+1)(n+2)(n+3)+1), A028387 (n+(n+1)^2), A167875, A166941, A166943.
Sequence in context: A038625 A280089 A041801 * A119351 A098627 A263930
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited and offset corrected by Klaus Brockhaus, Nov 14 2009
STATUS
approved