login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166943
One third of product plus sum of six consecutive nonnegative numbers.
4
5, 247, 1689, 6731, 20173, 50415, 110897, 221779, 411861, 720743, 1201225, 1921947, 2970269, 4455391, 6511713, 9302435, 13023397, 17907159, 24227321, 32303083, 42504045, 55255247, 71042449, 90417651, 114004853, 142506055
OFFSET
0,1
COMMENTS
a(n) = ((n*...*(n+5))+(n+...+(n+5)))/3, n >= 0.
Binomial transform of 5, 242, 1200, 2400, 2400, 1200, 240, 0, 0, 0, 0, ....
LINKS
FORMULA
a(n) = (n^6 + 15n^5 + 85n^4 + 225n^3 + 274n^2 + 126n + 15)/3. - Charles R Greathouse IV, Nov 04 2009
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6)+240 for n > 5; a(0)=5, a(1)=247, a(2)=1689, a(3)=6731, a(4)=20173, a(5)=50415. - Klaus Brockhaus, Nov 14 2009
G.f.: (5+212*x+65*x^2-80*x^3+55*x^4-20*x^5+3*x^6)/(1-x)^7. - Klaus Brockhaus, Nov 14 2009
EXAMPLE
a(0) = (0*1*2*3*4*5+0+1+2+3+4+5)/3 = (0+15)/3 = 5.
a(1) = (1*2*3*4*5*6+1+2+3+4+5+6)/3 = (720+21)/3 = 247.
MATHEMATICA
lst={}; Do[p=(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n+(n+5)+(n+4)+(n+3)+(n+2)+(n+1)+n; AppendTo[lst, p/3], {n, 0, 5!}]; lst
(Plus@@#+Times@@#)/3&/@Partition[Range[0, 30], 6, 1] (* Harvey P. Dale, Nov 10 2009 *)
PROG
(Magma) [ (&*s + &+s)/3 where s is [n..n+5]: n in [0..25] ]; // Klaus Brockhaus, Nov 14 2009
CROSSREFS
Cf. A001477 (nonnegative integers), A028387 (n+(n+1)^2), A167875, A166941, A166942.
Sequence in context: A361538 A215910 A097323 * A125533 A068727 A135095
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited and offset corrected by Klaus Brockhaus, Nov 14 2009
STATUS
approved