login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

One third of product plus sum of six consecutive nonnegative numbers.
4

%I #13 Sep 08 2022 08:45:48

%S 5,247,1689,6731,20173,50415,110897,221779,411861,720743,1201225,

%T 1921947,2970269,4455391,6511713,9302435,13023397,17907159,24227321,

%U 32303083,42504045,55255247,71042449,90417651,114004853,142506055

%N One third of product plus sum of six consecutive nonnegative numbers.

%C a(n) = ((n*...*(n+5))+(n+...+(n+5)))/3, n >= 0.

%C Binomial transform of 5, 242, 1200, 2400, 2400, 1200, 240, 0, 0, 0, 0, ....

%H Vincenzo Librandi, <a href="/A166943/b166943.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = (n^6 + 15n^5 + 85n^4 + 225n^3 + 274n^2 + 126n + 15)/3. - _Charles R Greathouse IV_, Nov 04 2009

%F a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6)+240 for n > 5; a(0)=5, a(1)=247, a(2)=1689, a(3)=6731, a(4)=20173, a(5)=50415. - _Klaus Brockhaus_, Nov 14 2009

%F G.f.: (5+212*x+65*x^2-80*x^3+55*x^4-20*x^5+3*x^6)/(1-x)^7. - _Klaus Brockhaus_, Nov 14 2009

%e a(0) = (0*1*2*3*4*5+0+1+2+3+4+5)/3 = (0+15)/3 = 5.

%e a(1) = (1*2*3*4*5*6+1+2+3+4+5+6)/3 = (720+21)/3 = 247.

%t lst={};Do[p=(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n+(n+5)+(n+4)+(n+3)+(n+2)+(n+1)+n;AppendTo[lst,p/3],{n,0,5!}];lst

%t (Plus@@#+Times@@#)/3&/@Partition[Range[0,30],6,1] (* _Harvey P. Dale_, Nov 10 2009 *)

%o (Magma) [ (&*s + &+s)/3 where s is [n..n+5]: n in [0..25] ]; // _Klaus Brockhaus_, Nov 14 2009

%Y Cf. A001477 (nonnegative integers), A028387 (n+(n+1)^2), A167875, A166941, A166942.

%K nonn,easy

%O 0,1

%A _Vladimir Joseph Stephan Orlovsky_, Oct 24 2009

%E Edited and offset corrected by _Klaus Brockhaus_, Nov 14 2009