login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

One fifth of product plus sum of five consecutive nonnegative numbers.
4

%I #20 Sep 08 2022 08:45:48

%S 2,27,148,509,1350,3031,6056,11097,19018,30899,48060,72085,104846,

%T 148527,205648,279089,372114,488395,632036,807597,1020118,1275143,

%U 1578744,1937545,2358746,2850147,3420172,4077893,4833054,5696095

%N One fifth of product plus sum of five consecutive nonnegative numbers.

%C a(n) = ((n*...*(n+4))+(n+...+(n+4)))/5, n >= 0.

%C Binomial transform of 2, 25, 96, 144, 96, 24, 0, 0, 0, 0, ....

%C Partial sums of A062938 where initial term 1 is replaced by 2.

%H Vincenzo Librandi, <a href="/A166942/b166942.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = (n^5 + 10n^4 + 35n^3 + 50n^2 + 29n + 10)/5. - _Charles R Greathouse IV_, Nov 02 2009

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + 24 for n > 4; a(0)=2, a(1)=27, a(2)=148, a(3)=509, a(4)=1350. - _Klaus Brockhaus_, Nov 14 2009

%F G.f.: (2+15*x+16*x^2-14*x^3+6*x^4-x^5)/(1-x)^6. - _Klaus Brockhaus_, Nov 14 2009

%e a(0) = (0*1*2*3*4 + 0 + 1 + 2 + 3 + 4)/5 = (0 + 10)/5 = 2.

%e a(1) = (1*2*3*4*5 + 1 + 2 + 3 + 4 + 5)/5 = (120 + 15)/5 = 27.

%t Table[((n+4)*(n+3)*(n+2)*(n+1)*n+(n+4)+(n+3)+(n+2)+(n+1)+n)/5, {n,0,100}]

%t (Total[#]+Times@@#)/5&/@Partition[Range[0,100],5,1] (* _Harvey P. Dale_, Mar 05 2011 *)

%o (Magma) [ (&*s + &+s)/5 where s is [n..n+4]: n in [0..29] ]; // _Klaus Brockhaus_, Nov 14 2009

%Y Cf. A001477 (nonnegative integers), A062938 (squares of the form n(n+1)(n+2)(n+3)+1), A028387 (n+(n+1)^2), A167875, A166941, A166943.

%K nonn,easy

%O 0,1

%A _Vladimir Joseph Stephan Orlovsky_, Oct 24 2009

%E Edited and offset corrected by _Klaus Brockhaus_, Nov 14 2009