login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257393
Primes which are not the sum of two or more consecutive nonprime numbers.
3
2, 3, 7, 13, 47, 61, 73, 107, 167, 179, 313, 347, 421, 479, 719, 863, 1153, 1213, 1283, 1307, 1523, 3467, 3733, 4007, 4621, 4787, 5087, 5113, 5413, 7523, 7703, 9817, 10333, 12347, 12539, 13381, 17027, 18553, 19717, 19813, 23399, 26003, 31873, 36097, 38833
OFFSET
1,1
COMMENTS
Numbers n such that A257392(n) = 0.
LINKS
EXAMPLE
2 and 3 are in this sequence because nonnegative nonprime(1) + nonnegative nonprime(2) = 0 + 1 = 1 < 2 and nonnegative nonprime(2) + nonnegative nonprime(3) = 1 + 4 = 5 > 3 where 2, 3 are primes.
MAPLE
N:= 5000: # to get all terms <= N
Primes:= select(isprime, {2, seq(2*i+1, i=1..floor((N-1)/2))}):
Nonprimes:= sort(convert({$1..N} minus Primes, list)):
nnp:= nops(Nonprimes):
PSums:= [0, op(ListTools[PartialSums](Nonprimes))]:
A:= Primes:
mA:= max(A):
for i from 1 to nnp do
for j from i+2 to nnp+1 while PSums[j] - PSums[i] <= mA do od;
A:= A minus {seq(PSums[k]-PSums[i], k=i+2..j-1)};
od od:
A;
# if using Maple 11 or earlier, uncomment the next line
# sort(convert(A, list)); # Robert Israel, Apr 21 2015
MATHEMATICA
lim = 1000; s = {1}~Join~Select[Range@lim, CompositeQ]; Complement[Prime@ Range[PrimePi@ lim], DeleteDuplicates@ Sort@ Flatten[Plus @@@ Partition[s, #, 1] & /@ Range[lim - PrimePi@ lim]]] (* Michael De Vlieger, Apr 21 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(7) - a(26) from Michael De Vlieger, Apr 21 2015
a(27) - a(45) from Robert Israel, Apr 21 2015
STATUS
approved