|
|
A257393
|
|
Primes which are not the sum of two or more consecutive nonprime numbers.
|
|
2
|
|
|
2, 3, 7, 13, 47, 61, 73, 107, 167, 179, 313, 347, 421, 479, 719, 863, 1153, 1213, 1283, 1307, 1523, 3467, 3733, 4007, 4621, 4787, 5087, 5113, 5413, 7523, 7703, 9817, 10333, 12347, 12539, 13381, 17027, 18553, 19717, 19813, 23399, 26003, 31873, 36097, 38833
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers n such that A257392(n) = 0.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..209
|
|
EXAMPLE
|
2 and 3 are in this sequence because nonnegative nonprime(1) + nonnegative nonprime(2) = 0 + 1 = 1 < 2 and nonnegative nonprime(2) + nonnegative nonprime(3) = 1 + 4 = 5 > 3 where 2, 3 are primes.
|
|
MAPLE
|
N:= 5000: # to get all terms <= N
Primes:= select(isprime, {2, seq(2*i+1, i=1..floor((N-1)/2))}):
Nonprimes:= sort(convert({$1..N} minus Primes, list)):
nnp:= nops(Nonprimes):
PSums:= [0, op(ListTools[PartialSums](Nonprimes))]:
A:= Primes:
mA:= max(A):
for i from 1 to nnp do
for j from i+2 to nnp+1 while PSums[j] - PSums[i] <= mA do od;
A:= A minus {seq(PSums[k]-PSums[i], k=i+2..j-1)};
od od:
A;
# if using Maple 11 or earlier, uncomment the next line
# sort(convert(A, list)); # Robert Israel, Apr 21 2015
|
|
MATHEMATICA
|
lim = 1000; s = {1}~Join~Select[Range@lim, CompositeQ]; Complement[Prime@ Range[PrimePi@ lim], DeleteDuplicates@ Sort@ Flatten[Plus @@@ Partition[s, #, 1] & /@ Range[lim - PrimePi@ lim]]] (* Michael De Vlieger, Apr 21 2015 *)
|
|
CROSSREFS
|
Cf. A257392, A018252, A141468.
Sequence in context: A206579 A349327 A166945 * A273814 A085872 A070858
Adjacent sequences: A257390 A257391 A257392 * A257394 A257395 A257396
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Apr 21 2015
|
|
EXTENSIONS
|
a(7) - a(26) from Michael De Vlieger, Apr 21 2015
a(27) - a(45) from Robert Israel, Apr 21 2015
|
|
STATUS
|
approved
|
|
|
|