login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257395
Decimal expansion of the y-coordinate of the inflection point of product{1 + x^k, k >= 1} that has minimal x-coordinate.
4
1, 7, 6, 7, 1, 9, 5, 7, 8, 5, 6, 2, 9, 3, 7, 4, 3, 4, 7, 5, 7, 2, 1, 5, 9, 2, 6, 1, 8, 5, 7, 4, 1, 8, 6, 1, 1, 2, 5, 3, 7, 8, 0, 2, 9, 9, 3, 1, 3, 2, 0, 1, 3, 4, 9, 7, 3, 2, 3, 5, 3, 7, 2, 4, 8, 1, 3, 2, 5, 5, 7, 2, 6, 6, 2, 8, 1, 8, 4, 1, 4, 2, 8, 5, 7, 7, 3, 1, 8, 2, 3, 5, 1, 4, 7, 8, 6, 5, 7, 8, 1, 1, 0, 4
OFFSET
0,2
COMMENTS
The function product{1 + x^k, k >= 1} has two inflection points: (-0.78983..., 0.17671...) and (-0.23233..., 0.80084...).
EXAMPLE
y = 0.1767195785629374347572159261857418...
MATHEMATICA
f[x_] := f[x] = Product[(1 + x^k), {k, 1, 1000}];
p[x_, z_] := Sum[n/(x + x^(1 - n)), {n, z}]^2 + Sum[(n*x^(n - 2)*(n - x^n - 1))/(1 + x^n)^2, {n, z}];
Plot[f[x], {x, -1, 1}] (* plot showing 2 infl. pts. *)
t = x /. FindRoot[p[x, 1000], {x, -0.8}, WorkingPrecision -> 100] (* A257394 *)
u = f[t] (* A257395 *)
v = x /. FindRoot[p[x, 200], {x, -0.3}, WorkingPrecision -> 100] (* A257396 *)
w = f[v] (* A257397 *)
RealDigits[t, 10][[1]] (* A257394 *)
RealDigits[u, 10][[1]] (* A257395 *)
RealDigits[v, 10][[1]] (* A257396 *)
RealDigits[w, 10][[1]] (* A257397 *)
(* Peter J. C. Moses, Apr 21 2015 *)
digits = 104; QP = QPochhammer; QPP[x_] := With[{dx = 10^-digits}, (QP[-1, x+dx] - QP[-1, x-dx ])/(4*dx)]; x0 = x /. NMaximize[{QPP[x], -1 < x < -1/2}, x, WorkingPrecision -> 4 digits][[2]]; y = QP[-1, x0]/2; RealDigits[y, 10, digits][[1]] (* Jean-François Alcover, Nov 19 2015 *)
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Apr 22 2015
EXTENSIONS
More digits from Jean-François Alcover, Nov 19 2015
STATUS
approved