login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the y-coordinate of the inflection point of product{1 + x^k, k >= 1} that has minimal x-coordinate.
4

%I #14 Nov 19 2015 08:06:26

%S 1,7,6,7,1,9,5,7,8,5,6,2,9,3,7,4,3,4,7,5,7,2,1,5,9,2,6,1,8,5,7,4,1,8,

%T 6,1,1,2,5,3,7,8,0,2,9,9,3,1,3,2,0,1,3,4,9,7,3,2,3,5,3,7,2,4,8,1,3,2,

%U 5,5,7,2,6,6,2,8,1,8,4,1,4,2,8,5,7,7,3,1,8,2,3,5,1,4,7,8,6,5,7,8,1,1,0,4

%N Decimal expansion of the y-coordinate of the inflection point of product{1 + x^k, k >= 1} that has minimal x-coordinate.

%C The function product{1 + x^k, k >= 1} has two inflection points: (-0.78983..., 0.17671...) and (-0.23233..., 0.80084...).

%e y = 0.1767195785629374347572159261857418...

%t f[x_] := f[x] = Product[(1 + x^k), {k, 1, 1000}];

%t p[x_, z_] := Sum[n/(x + x^(1 - n)), {n, z}]^2 + Sum[(n*x^(n - 2)*(n - x^n - 1))/(1 + x^n)^2, {n, z}];

%t Plot[f[x], {x, -1, 1}] (* plot showing 2 infl. pts. *)

%t t = x /. FindRoot[p[x, 1000], {x, -0.8}, WorkingPrecision -> 100] (* A257394 *)

%t u = f[t] (* A257395 *)

%t v = x /. FindRoot[p[x, 200], {x, -0.3}, WorkingPrecision -> 100] (* A257396 *)

%t w = f[v] (* A257397 *)

%t RealDigits[t, 10][[1]] (* A257394 *)

%t RealDigits[u, 10][[1]] (* A257395 *)

%t RealDigits[v, 10][[1]] (* A257396 *)

%t RealDigits[w, 10][[1]] (* A257397 *)

%t (* _Peter J. C. Moses_, Apr 21 2015 *)

%t digits = 104; QP = QPochhammer; QPP[x_] := With[{dx = 10^-digits}, (QP[-1, x+dx] - QP[-1, x-dx ])/(4*dx)]; x0 = x /. NMaximize[{QPP[x], -1 < x < -1/2}, x, WorkingPrecision -> 4 digits][[2]]; y = QP[-1, x0]/2; RealDigits[y, 10, digits][[1]] (* _Jean-François Alcover_, Nov 19 2015 *)

%Y Cf. A257394, A257396, A257397.

%K nonn,cons,easy

%O 0,2

%A _Clark Kimberling_, Apr 22 2015

%E More digits from _Jean-François Alcover_, Nov 19 2015