OFFSET
0,4
LINKS
Robert Israel, Table of n, a(n) for n = 0..1322
FORMULA
a(n) = Sum_{i=0..floor(n/2)}4^(n-2i)*C(i)*binomial(n-i-1,n), where C(i) is the i-th Catalan number A000108.
G.f.: (1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2).
a(n) ~ 2^(n+3/4) * (1+sqrt(2))^(n+1/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 22 2015
a(n) = ((-16*n + 40)*a(n-3) + (-12*n+12)*a(n-2) +(8*n+4)*a(n-1))/(n+2). - Robert Israel, Apr 22 2015
MAPLE
rec:= a(n) = ((-16*n + 40)*a(n-3) + (-12*n+12)*a(n-2) +(8*n+4)*a(n-1))/(n+2):
f:= gfun:-rectoproc({rec, a(0)=1, a(1)=0, a(2)=1}, a(n), remember):
seq(f(i), i=0..100); # Robert Israel, Apr 22 2015
MATHEMATICA
CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
PROG
(PARI) x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2)) \\ G. C. Greubel, Apr 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
José Luis Ramírez Ramírez, Apr 21 2015
STATUS
approved