login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257390
Number of 4-Motzkin paths of length n with no level steps at even level.
1
1, 0, 1, 4, 18, 80, 357, 1596, 7150, 32096, 144362, 650568, 2937316, 13286368, 60205805, 273290988, 1242639446, 5659468736, 25816338046, 117945079736, 539646216188, 2472638868960, 11345220210658, 52124831171544, 239792244636876, 1104495824173376
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{i=0..floor(n/2)}4^(n-2i)*C(i)*binomial(n-i-1,n), where C(i) is the i-th Catalan number A000108.
G.f.: (1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2).
a(n) ~ 2^(n+3/4) * (1+sqrt(2))^(n+1/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 22 2015
a(n) = ((-16*n + 40)*a(n-3) + (-12*n+12)*a(n-2) +(8*n+4)*a(n-1))/(n+2). - Robert Israel, Apr 22 2015
MAPLE
rec:= a(n) = ((-16*n + 40)*a(n-3) + (-12*n+12)*a(n-2) +(8*n+4)*a(n-1))/(n+2):
f:= gfun:-rectoproc({rec, a(0)=1, a(1)=0, a(2)=1}, a(n), remember):
seq(f(i), i=0..100); # Robert Israel, Apr 22 2015
MATHEMATICA
CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
PROG
(PARI) x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2)) \\ G. C. Greubel, Apr 08 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved