login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A063881
Number of oriented trees rooted at an arc.
1
1, 4, 18, 80, 367, 1708, 8122, 39204, 191963, 950984, 4759626, 24030736, 122258314, 626162464, 3225926450, 16706775984, 86928097451, 454203897192, 2382255252398, 12537764465072, 66193294753768, 350472816969976, 1860542261745782, 9901018433270812
OFFSET
2,2
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 61, (3.3.7).
LINKS
FORMULA
a(n) = A000151(n)- A000238(n). G.f.: A(x) = B(x)^2, where B(x) is g.f. for A000151.
MAPLE
B:= proc(n) option remember; if n<=1 then unapply(x, x) else unapply(convert(series(x*exp(2*sum(B(n-1)(x^k)/k, k=1..n-1)), x, n+1), polynom), x) fi end: a:= proc(n) local T; T:=B(n-1)(x); add(coeff(T, x, k)* coeff(T, x, n-k), k=1..n-1) end: seq(a(n), n=2..23); # Alois P. Heinz, Aug 23 2008
MATHEMATICA
B[n_ /; n <= 1] = Identity; B[n_] := B[n] = Function[x, Evaluate[Normal[Series[x*Exp[2*Sum[B[n-1][x^k]/k, {k, 1, n-1}]], {x, 0, n+1}]]]]; a[n_] := Module[{T}, T = B[n-1][x]; Sum[Coefficient[T, x, k]*Coefficient[T, x, n-k], {k, 1, n-1}]]; Table[a[n], {n, 2, 23}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A257390 A104631 A106391 * A264004 A282708 A252823
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Aug 27 2001
STATUS
approved