The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063882 a(n) = a(n - a(n - 1)) + a(n - a(n - 4)), with a(1) = ... = a(4) = 1. 31
 1, 1, 1, 1, 2, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 27, 28, 29, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 39, 40 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS A captivating recursive function. A meta-Fibonacci recursion. This has been completely analyzed by Balamohan et al. They prove that the sequence a(n) is monotonic, with successive terms increasing by 0 or 1, so the sequence hits every positive integer. They demonstrate certain special structural properties and periodicities of the associated frequency sequence (the number of times a(n) hits each positive integer) that make possible an iterative computation of a(n) for any value of n. Further, they derive a natural partition of the a-sequence into blocks of consecutive terms ("generations") with the property that terms in one block determine the terms in the next. a(A202014(n)) = n and a(m) < n for m < A202014(n). [Reinhard Zumkeller, Dec 08 2011] LINKS T. D. Noe and N. J. A. Sloane, Table of n, a(n) for n = 1..10000 Altug Alkan, On a Generalization of Hofstadter's Q-Sequence: A Family of Chaotic Generational Structures, Complexity (2018) Article ID 8517125. B. Balamohan, A. Kuznetsov, and S. Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Sequences, Vol. 10 (2007), #07.7.1. Jonathan H. B. Deane and Guido Gentile, A diluted version of the problem of the existence of the Hofstadter sequence, arXiv:2311.13854 [math.NT], 2023. A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y. Zhang, Constructing New Families of Nested Recursions with Slow Solutions, SIAM J. Discrete Math., 30(2), 2016, 1128-1147. (20 pages); DOI:10.1137/15M1040505 Kellie O'Connor Gutman, V(n) = V(n - V(n - 1)) + V(n - V(n - 4)), The Mathematical Intelligencer, Volume 23, Number 3, Summer 2001, page 50. Index entries for Hofstadter-type sequences FORMULA n/2 < a(n) <= n/2 + log_2 (n) - 1 for all n > 6 [Balamohan et al., Proposition 5]. MAPLE a := proc(n) option remember; if n<=4 then 1 else if n > a(n-1) and n > a(n-4) then RETURN(a(n-a(n-1))+a(n-a(n-4))); else ERROR(" died at n= ", n); fi; fi; end; MATHEMATICA a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = a[n-a[n-1]] + a[n-a[n-4]] PROG (Haskell) a063882 n = a063882_list !! (n-1) a063882_list = 1 : 1 : 1 : 1 : zipWith (+) (map a063882 \$ zipWith (-) [5..] a063882_list) (map a063882 \$ zipWith (-) [5..] \$ drop 3 a063882_list) -- Reinhard Zumkeller, Dec 08 2011 CROSSREFS Cf. A132157. For partial sums see A129632. A136036(n) = a(n+1) - a(n). Cf. A063892, A087777. Cf. A132174, A132175, A132176, A132177. Cf. A202016 (occur only once). Sequence in context: A079411 A360744 A198454 * A097873 A005375 A138370 Adjacent sequences: A063879 A063880 A063881 * A063883 A063884 A063885 KEYWORD nice,nonn AUTHOR Theodor Schlickmann (Theodor.Schlickmann(AT)cec.eu.int), Aug 28 2001 EXTENSIONS Edited by N. J. A. Sloane, Nov 06 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 17:56 EDT 2024. Contains 372971 sequences. (Running on oeis4.)