login
A000238
Number of oriented trees with n nodes.
(Formerly M2756 N1108)
17
1, 1, 3, 8, 27, 91, 350, 1376, 5743, 24635, 108968, 492180, 2266502, 10598452, 50235931, 240872654, 1166732814, 5702001435, 28088787314, 139354922608, 695808554300, 3494390057212, 17641695461662, 89495023510876, 456009893224285, 2332997330210440
OFFSET
1,3
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 286.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 60, r(x).
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 350 terms from N. J. A. Sloane)
H. R. Afshar, E. A. Bergshoeff, W. Merbis, Interacting spin-2 fields in three dimensions, arXiv preprint arXiv:1410.6164 [hep-th], 2014-2015, JHEP 2015 (2015) # 040.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy), TOC
R. Simion, Trees with 1-factors and oriented trees, Discrete Math., 88 (1991), 93-104.
FORMULA
G.f. = x+x^2+3*x^3+8*x^4+27*x^5+... = R(x)-R(x)^2, where R(x) = g.f. for A000151.
a(n) ~ c * d^n / n^(5/2), where d = A245870 = 5.64654261623294971289271351621..., c = 0.22571615379282714232305... . - Vaclav Kotesovec, Dec 08 2014
MAPLE
A:= proc(n) option remember; if n=0 then 0 else unapply(convert(series(x*exp(2* add(A(n-1)(x^k)/k, k=1..n-1)), x=0, n), polynom), x) fi end: a:= n-> coeff(series(A(n+1)(x) *(1-A(n+1)(x)), x=0, n+1), x, n): seq(a(n), n=1..26); # Alois P. Heinz, Aug 20 2008
MATHEMATICA
A[n_][y_] := A[n][y] = If[n == 0, 0, Normal[Series[x*Exp[2*Sum[A[n-1][x^k]/k, {k, 1, n-1}]], {x, 0, n}] /. x -> y]]; a[n_] := SeriesCoefficient[A[n+1][x]*(1-A[n+1][x]), {x, 0, n}]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
PROG
(PARI) seq(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 2/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); Vec(Ser(A)-x*Ser(A)^2)} \\ Andrew Howroyd, May 13 2018
CROSSREFS
Cf. A000060, A000151, A051437 (linear oriented), A334827 (oriented star-like).
Diagonal of A335362.
Sequence in context: A374570 A047153 A281347 * A259811 A148841 A148842
KEYWORD
nonn,nice
EXTENSIONS
2 errors corrected by Paul Zimmermann, Mar 01 1996
More terms from N. J. A. Sloane, Mar 10 2007
STATUS
approved