The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007996 Primes that divide at least one term of the sequence f given by f(1) = 2, f(n+1) = f(n)^2-f(n)+1 = A000058(n). 9
 2, 3, 7, 13, 43, 73, 139, 181, 547, 607, 1033, 1171, 1459, 1861, 1987, 2029, 2287, 2437, 4219, 4519, 6469, 7603, 8221, 9829, 12763, 13147, 13291, 13999, 15373, 17881, 17977, 19597, 20161, 20479, 20641, 20857, 20929, 21661, 23689, 23773, 27031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Or, let S_1 =  and let S_{n+1} = list formed by sorting the union of S_n together with all prime factors of 1 + Product_i S_n(i) into increasing order; sequence is limit as n -> infinity of S_n. Prime divisors of the terms of Sylvester's sequence A000058. - Max Alekseyev, Jan 03 2004. Also of A007018. - N. J. A. Sloane, Jan 27 2007 Because all terms of the sequence f(n) are coprime, a prime can divide at most one term. Odoni shows that primes p>3 in this sequence must satisfy p=1 (mod 6). - T. D. Noe, Sep 25 2010 See A180871(n) for the index of the first term of A000058 (this is one less than the index of the f-sequence) divisible by a(n). - M. F. Hasler, Apr 24 2014 LINKS Max Alekseyev, Table of n, a(n) for n = 1..12046 (first 8181 terms are also given at the Andersen link) J. K. Andersen, Factorization of Sylvester's sequence R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012 R. W. K. Odoni, On the prime divisors of the sequence w_{n+1} = 1+w_1 ... w_n, J. London Math. Soc. 32 (1985), 1-11. Filip Saidak, A New Proof of Euclid's Theorem, Amer. Math. Monthly, Dec 2006 Eric Weisstein's World of Mathematics, Sylvester's sequence MAPLE n := 1; for p do if isprime(p) then x := 2 mod p; S := {}; while not member(x, S) do if x=0 then a[n] := p; n := n+1; break; fi; S := S union {x}; x := (x^2-x+1) mod p; od; fi; od; MATHEMATICA t={}; p=1; While[Length[t]<100, p=NextPrime[p]; s=Mod[2, p]; k=0; modSet={}; While[s>0 && !MemberQ[modSet, s], AppendTo[modSet, s]; k++; s=Mod[s^2-s+1, p]]; If[s==0, AppendTo[t, {p, k}]]]; Transpose[t][] (* T. D. Noe, Sep 25 2010 *) PROG (PARI) is(n)=my(k=Mod(2, n)); for(i=1, n, k=(k-1)*k+1; if(k==0, return(isprime(n)))); n==2 \\ Charles R Greathouse IV, Sep 30 2015 CROSSREFS The missing primes form A096264. Cf. A014546, A091335, A091336. Cf. A180871 (k such that a(n) divides A000058(k)). Cf. A323605 (smallest prime dividing A000058(n)). Sequence in context: A078749 A046062 A096263 * A206579 A166945 A257393 Adjacent sequences:  A007993 A007994 A007995 * A007997 A007998 A007999 KEYWORD nonn AUTHOR Bennett Battaile (bennett.battaile(AT)autodesk.com) EXTENSIONS More terms from Max Alekseyev, Jan 03 2004 Entry revised by N. J. A. Sloane, Jan 28 2007 Definition corrected (following a remark by Don Reble) by M. F. Hasler, Apr 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 15:26 EDT 2021. Contains 343154 sequences. (Running on oeis4.)