login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007993
Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.
1
3, 12, 40, 102, 219, 419, 738, 1221, 1923, 2910, 4260, 6064, 8427, 11469, 15326, 20151, 26115, 33408, 42240, 52842, 65467, 80391, 97914, 118361, 142083, 169458, 200892, 236820, 277707, 324049, 376374, 435243, 501251, 575028, 657240
OFFSET
1,1
COMMENTS
The series in the Humphries paper has zeros interleaved.
LINKS
S. P. Humphries, Home page
S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.
FORMULA
a(n) = 3 + 9(n-1) + 19(n-1)(n-2)/2 + 15(n-1)(n-2)(n-3)/6 + 6(n-1)(n-2)(n-3)(n-4)/24 + (n-1)(n-2)(n-3)(n-4)(n-5)/120. - John W. Layman, May 12 1999
a(n-1) = (1/120)(n^5 + 10n^4 + 35n^3 - 10n^2 - 396n + 720) with n>1. - Ralf Stephan, Jun 11 2005
G.f. -x*(-3+6*x-13*x^2+18*x^3-12*x^4+3*x^5) / (x-1)^6 . - R. J. Mathar, Dec 02 2011
MATHEMATICA
CoefficientList[ Series[(3 - 6x + 13x^2 - 18x^3 + 12x^4 - 3x^5) / (1 - 6x + 15x^2 - 20x^3 + 15x^4 - 6x^5 + x^6), {x, 0, 34}], x] (* Jean-François Alcover, Dec 02 2011 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {3, 12, 40, 102, 219, 419}, 40] (* Harvey P. Dale, Jul 24 2022 *)
CROSSREFS
Sequence in context: A034956 A373301 A032093 * A293366 A327319 A080929
KEYWORD
nonn,easy
EXTENSIONS
More terms from Ralf Stephan, Jun 11 2005
STATUS
approved