OFFSET
0,5
LINKS
H. O. Foulkes, Tangent and secant numbers and representations of symmetric groups, Discrete Math. 15 (1976), no. 4, 311-324.
R. P. Stanley, Alternating permutations and symmetric functions, arXiv:math/0603520 [math.CO], 2006. [Joel B. Lewis, May 21 2009]
FORMULA
G.f.: Sum_{k>=0} E_{2k+1}^2 u^(2k+1)/(2k+1)! + (1-x^2)^(-1/2) Sum_{k>=0} E_{2k}^2 u^(2k)/(2k)!, where E_j is an Euler number (A000111) and u = (1/2)*log((1+x)/(1-x)). - Richard Stanley, Jan 21 2006
EXAMPLE
The only alternating permutation of 1,2,3 whose inverse is alternating is 132.
The two alternating permutations of 1,2,3,4 whose inverses are alternating are 1324 and 3412.
MATHEMATICA
m = 27;
e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)(2^(n+1)-1)*BernoulliB[ n+1])/(n+1)]];
u[x_] := Log[(1+x)/(1-x)]/2;
Sum[e[2k+1]^2 u[x]^(2k+1)/(2k+1)!, {k, 0, m}] + (1-x^2)^(-1/2) Sum[e[2k]^2* u[x]^(2k)/(2k)!, {k, 0, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Feb 24 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
poirier(AT)lacim.uqam.ca, Simon Plouffe
EXTENSIONS
More terms from Vladeta Jovovic, May 15 2007
Two initial terms (thus correcting first term index, and consequent correction of Mathematica code) added by David Bevan, Feb 10 2020
STATUS
approved