The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007999 a(n) is the number of permutations w of 1,2,...,n such that both w and w^{-1} are alternating. 3
 1, 1, 1, 1, 2, 3, 8, 19, 64, 213, 880, 3717, 18288, 92935, 531440, 3147495, 20525168, 138638825, 1015694832, 7700244745, 62623847536, 526317901451, 4705365925872, 43407723925499, 423149546210416, 4250149857500861, 44868038386273776, 487341646372204813 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS H. O. Foulkes, Tangent and secant numbers and representations of symmetric groups, Discrete Math. 15 (1976), no. 4, 311-324. R. P. Stanley, Alternating permutations and symmetric functions, arXiv:math/0603520 [math.CO], 2006. [Joel B. Lewis, May 21 2009] FORMULA G.f.: Sum_{k>=0} E_{2k+1}^2 u^(2k+1)/(2k+1)! + (1-x^2)^(-1/2) Sum_{k>=0} E_{2k}^2 u^(2k)/(2k)!, where E_j is an Euler number (A000111) and u = (1/2)*log((1+x)/(1-x)). - Richard Stanley, Jan 21 2006 EXAMPLE The only alternating permutation of 1,2,3 whose inverse is alternating is 132. The two alternating permutations of 1,2,3,4 whose inverses are alternating are 1324 and 3412. MATHEMATICA m = 27; e[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)(2^(n+1)-1)*BernoulliB[ n+1])/(n+1)]]; u[x_] := Log[(1+x)/(1-x)]/2; Sum[e[2k+1]^2 u[x]^(2k+1)/(2k+1)!, {k, 0, m}] + (1-x^2)^(-1/2) Sum[e[2k]^2* u[x]^(2k)/(2k)!, {k, 0, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Feb 24 2019 *) CROSSREFS Cf. A000111. For odd n, a(n) = A332344(n). For even n > 1, a(n) - a(n-2) = A332344(n). For n > 1, a(n) = A332345(n)/2 - A332344(n). Sequence in context: A243791 A243335 A303835 * A006609 A005663 A112834 Adjacent sequences:  A007996 A007997 A007998 * A008000 A008001 A008002 KEYWORD nonn AUTHOR poirier(AT)lacim.uqam.ca, Simon Plouffe EXTENSIONS More terms from Vladeta Jovovic, May 15 2007 Two initial terms (thus correcting first term index, and consequent correction of Mathematica code) added by David Bevan, Feb 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 20:41 EDT 2021. Contains 343921 sequences. (Running on oeis4.)