login
A332345
a(n) is the number of totally alternating permutations of 1,2,...,n.
2
1, 1, 2, 4, 6, 12, 28, 76, 240, 852, 3392, 14868, 71392, 371740, 2089184, 12589980, 81037792, 554555300, 4021728992, 30800978980, 248464000480, 2105271605804, 18696216008416, 173630895701996, 1683187452989920, 17000599430003444, 178625854452674272
OFFSET
0,3
COMMENTS
A permutation w of 1,...,n is totally alternating if both w and w^{-1} are either alternating or reverse alternating.
Totally alternating permutations are those that avoid the consecutive patterns 123 and 321 and also the consecutive covincular patterns 123 and 321.
If a permutation is totally alternating, then so are its other 7 symmetries.
LINKS
R. P. Stanley, Alternating permutations and symmetric functions, arXiv:math/0603520 [math.CO], 2006.
EXAMPLE
The six totally alternating permutations of 1,...,4 are 1324, 2143, 2413, 3142, 3412 and 4231.
CROSSREFS
For n > 1, a(n) = 2*(A007999(n) + A332344(n)).
For odd n > 1, a(n) = 4*A007999(n).
For even n > 1, a(n) = 4*A007999(n) - 2*A007999(n-2).
Sequence in context: A340638 A177905 A118405 * A095912 A143474 A261341
KEYWORD
nonn
AUTHOR
David Bevan, Feb 10 2020
STATUS
approved