

A340638


Integers whose number of divisors that are Zuckerman numbers sets a new record.


2



1, 2, 4, 6, 12, 24, 72, 144, 360, 432, 1080, 2016, 2160, 6048, 8064, 15120, 24192, 48384, 88704, 120960, 241920, 266112, 532224, 1064448, 1862784, 2661120, 3725568, 5322240, 7451136, 10450944, 19160064, 20901888, 28740096, 38320128, 57480192, 99283968, 114960384
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A Zuckerman number is a number that is divisible by the product of its digits (A007602).
The terms in this sequence are not necessarily Zuckerman numbers. For example a(7) = 72 has product of digits = 14 and 72/14 = 36/7 = 5.142...
The first seven terms are the first seven terms of A087997, then A087997(8) = 66 while a(8) = 144.


LINKS



EXAMPLE

The 8 divisors of 24 are all Zuckerman numbers, and also, 24 is the smallest integer that has at least 8 divisors that are Zuckerman numbers, hence 24 is a term.


MATHEMATICA

zuckQ[n_] := (prod = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prod]; s[n_] := DivisorSum[n, 1 &, zuckQ[#] &]; smax = 0; seq = {}; Do[s1 = s[n]; If[s1 > smax, smax = s1; AppendTo[seq, n]], {n, 1, 10^5}]; seq (* Amiram Eldar, Jan 14 2021 *)


PROG

(PARI) isokz(n) = iferr(!(n % vecprod(digits(n))), E, 0); \\ A007602
lista(nn) = {my(m=0); for (n=1, nn, my(x = sumdiv(n, d, isokz(d)); ); if (x > m, m = x; print1(n, ", ")); ); } \\ Michel Marcus, Jan 15 2021


CROSSREFS



KEYWORD

nonn,base


AUTHOR



EXTENSIONS



STATUS

approved



