login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340640
Perfect powers such that the two immediately adjacent perfect powers have at least one largest exponent A025479 greater than 2.
3
4, 9, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 196, 225, 243, 256, 289, 324, 361, 484, 529, 576, 676, 784, 961, 1000, 1024, 1089, 1225, 1296, 1331, 1369, 1681, 1764, 2025, 2116, 2187, 2197, 2209, 2304, 2500, 2704, 2809, 3025, 3136, 3364, 3481, 3969
OFFSET
1,1
EXAMPLE
a(1) = 4 because the next perfect power is 8 = 2^3, i.e., its exponent is > 2.
a(2) = 9: the exponents of the neighbors 8 = 2^3 and 16 = 2^4 are both > 2.
16 is not in the sequence because both neighboring perfect powers 9 = 3^2 and 25 = 5^2 have exponents 2.
Neighbors with exponents > 2 of the next terms: a(3) = 25 (16 = 2^3), a(4) = 27 (32 = 2^5), a(5) = 32 (27 = 3^3), a(6) = 36 (32 = 2^5), a(7) = 49 (64 = 2^6), a(8) = 64 (81 = 3^4).
PROG
(PARI) a340640(limit)={my(p2=999, p1=2, n2=1, n1=4); for(n=5, limit, my(p0=ispower(n)); if(p0>1, if(p2+p0>4, print1(n1, ", ")); n2=n1; n1=n; p2=p1; p1=p0))};
a340640(5000)
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jan 14 2021
STATUS
approved