login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340636
Primes of the form k + A037276(k) in more than one way.
3
251, 2671, 2687, 2753, 23327, 23561, 27827, 28499, 28789, 28817, 29411, 34757, 223441, 226001, 227537, 230849, 231359, 232217, 232259, 232367, 232643, 232919, 233591, 234791, 236129, 236609, 236867, 237857, 238141, 239023, 239873, 240899, 241169, 241343, 241687, 241691, 242447, 242747, 245299
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 2687 = 170 + A037276(170) = 170 + 2517
= 458 + A037276(458) = 458 + 2229.
The first term that occurs in more than two ways is
a(163) = 2255299 = 4180 + A037276(4180) = 4180 + 2251119
= 21156 + A037276(21156) = 21156 + 2234143
= 29560 + A037276(29560) = 29560 + 2225739.
MAPLE
N:= 5*10^5: # for terms <= N
dcat:= proc(L) local i, x;
x:= L[-1];
for i from nops(L)-1 to 1 by -1 do
x:= 10^(1+ilog10(x))*L[i]+x
od;
x
end proc:
A037276:= proc(n) local F;
F:= sort(ifactors(n)[2], (a, b) -> a[1] < b[1]);
dcat(map(t -> t[1]$t[2], F));
end proc:
A037276(1):= 1:
R:= NULL:
for n from 1 to N/2 do
v:= n + A037276(n);
if v < N and isprime(v) then R:= R, v fi;
od:
S:= {R}:
select(s -> numboccur(s, [R])>1, S);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
J. M. Bergot and Robert Israel, Jan 14 2021
STATUS
approved