|
|
A037276
|
|
Start with 1; for n>1, replace n with the concatenation of its prime factors in increasing order.
|
|
34
|
|
|
1, 2, 3, 22, 5, 23, 7, 222, 33, 25, 11, 223, 13, 27, 35, 2222, 17, 233, 19, 225, 37, 211, 23, 2223, 55, 213, 333, 227, 29, 235, 31, 22222, 311, 217, 57, 2233, 37, 219, 313, 2225, 41, 237, 43, 2211, 335, 223, 47, 22223, 77, 255, 317, 2213, 53, 2333
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
|
|
EXAMPLE
|
If n = 2^3*5^5*11^2 = 3025000, a(n) = 222555551111 (n=2*2*2*5*5*5*5*5*11*11, then remove the multiplication signs).
|
|
MAPLE
|
# This is for n>1
read("transforms") ;
local L, p ;
L := [] ;
for p in ifactors(n)[2] do
L := [op(L), seq(op(1, p), i=1..op(2, p))] ;
end do:
digcatL(L) ;
|
|
MATHEMATICA
|
co[n_, k_] := Nest[Flatten[IntegerDigits[{#, n}]] &, n, k - 1]; Table[FromDigits[Flatten[IntegerDigits[co @@@ FactorInteger[n]]]], {n, 54}] (* Jayanta Basu, Jul 04 2013 *)
FromDigits@ Flatten@ IntegerDigits[Table[#1, {#2}] & @@@ FactorInteger@ #] & /@ Range@ 54 (* Michael De Vlieger, Jul 14 2015 *)
|
|
PROG
|
(PARI) a(n)={ n<4 & return(n); for(i=1, #n=factor(n)~, n[1, i]=concat(vector(n[2, i], j, Str(n[1, i])))); eval(concat(n[1, ]))} \\ M. F. Hasler, Jun 19 2011
(Haskell)
a037276 = read . concatMap show . a027746_row
(Python)
from sympy import factorint
def a(n):
f=factorint(n)
l=sorted(f)
return 1 if n==1 else int("".join(str(i)*f[i] for i in l))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|