Confessions of a Sequence Addict

Neil J.A. Sloane

Math. Dept., Rutgers University and The OEIS Foundation, Highland Park, NJ

AofA 2017 Princeton

Outline

- About the OEIS
- Fun with digits
- Sequences from geometry
- Lexicographically Earliest Sequences ...
- The Curling Number Conjectue

This site is supported by donations to The OEIS Foundation.

OEIS.ORG E ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

The On-Line Encyclopedia of Integer Sequences® (OEIS®)

Enter a sequence, word, or sequence number:

Search Hints

Hints Welcome Video

For more information about the Encyclopedia, see the Welcome page.

<u>Languages: English Shqip</u> <u>العربية</u> <u>Bangla Български Català</u> 中文(正體字,简化字(1),简化字(2)) <u>Hrvatski Čeština Dansk Nederlands Esperanto Eesti</u> <u>усский Igbo Bahasa Indonesia Italiano 日本語 ಕನ್ನಡ 한국어 Lietuvių मराठी Bokmål Nynorsk Polski Português</u> <u>Română Русский Српски Slovenščina Español Svenska Tagalog ภาษาไทย</u> <u>Тürkçe Українська</u> <u>цер Việt Cymraeg</u>

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy.

OEIS.org

- Fun: 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, ...? (A64413)
- Addictive (better than video games)
- Accessible (free, friendly)
- Street creds (6000 citations)
- Interesting, educational
- Essential reference
- Low-hanging fruit
- Need editors

Facts about the OEIS

- Accurate information about 300000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, music
- 75 new entries and updates every day
- 6000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Since 2010, a moderated Wiki, owned by OEIS Foundation, a 501(c)(3) public charity

Main Uses for OEIS

- To see if your sequence is new, to find references, formulas, programs
- Catalan or Collatz? (Very easy or very hard?)
- Many collaborations, very international
- Source of fascinating research problems(*)
- Has led many people into mathematics

• Fun, Escape

(*) Look for: "Conjecture", "It appears that", "It would be nice to", ...

Fun With Digits

- "Climb to a prime"
- Binary version
- Home primes
- Powertrains
- A memorable prime

NEWS FLASH: JUNE 5 2017 Math Prof loses \$1000 bet!

If $n = p_1^{e_1} p_2^{e_2} \cdots$ then $f(n) = p_1 e_1 p_2 e_2 \cdots$ but omit any $e_i = 1$.

n		2	3	4	5	6	7	8	9	10		12	••	20	
f(n)	I	2	3	22	5	23	7	23	32	25		223	••	225	A080670
F(n)	I	2	3	211	5	23	7	23	2213	2213	11	223	••	1	A195264

Still growing after 110 terms, see A195265

John Conway, 2014: Start with n, repeatedly apply f until reach I or a prime. Offers \$1000 for proof or disproof. James Davis, June 5 2017:

 $13532385396179 = 13.53^2.3853.96179$

Fixed but not a prime!

Thursday, June 22, 17

POWER TRAINS: John Conway, 2007

If n = abcde... then $f(n) = a^b c^d e...$ with $0^0 = 1$ $f(24) = 2^4 = 16$, $f(623) = 6^2.3 = 108$,... (A133500)

The known fixed points are

Conjecture: no other fixed points (none below 10¹⁰⁰)

Perhaps all these problems have only finitely many (primitive) exceptions?

A Memorable Prime!

A Memorable Prime!

12345678987654321 11111111² **12345678910987654321 Prime!**

When is 123...n-1 n n-1 ...21 a prime?

Answer: when n is 10, 2446, but next term is unknown!

When is 1234...n prime?

1234567 = 127 . 9721

12345678910111213 = 113.125693.869211457

Conjecture: infinitely many primes None are known!

We know the smallest one has n >340000

See A7908 for details of the search (which seems to have stalled)

Sequences from Geometry

- Peaceable queens: A250000
- Ways to draw n circles in plane: A250001

Poster on the OEIS Foundation web site

Thursday, June 22, 17

Peaceable Queens A250000

Peaceable coexisting armies of queens: the maximum number m such that m white queens and m black queens can coexist on an n X n chessboard without attacking each other.

A250000

Models and illustrations by Michael Thomas De Vlieger, AIA, AJGA, 7 January 2016

(Michael De Vlieger)

A250000

•	•	•	•	•		W	W	W	W	W	W		•	•	•	•	•	•	•	•	•	•	•
						W	W	W	W	W	W									•	•	.1	N
		•				W	W	W	W	W	W					•						Ŵ	Ñ
						W	W	W	W	W	W										W	WI	N
						W	W	W	W	W	W									W	W	W	N
					-	w	w	W	w	w									w	w	w	wī	~
•	•	•	•	•	•		w	W	w		•	•	•	•	•	•	•	w	w	ы	ы	ыı	
•	•	•	•	•	•	•	**	14		•	•	•	•	•	•	•	•		14	14	IN IN		
•	•	•	•	•	•	•	•	W	•	•	•	•	•	•	•	•	•	w	W	W	W		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	W	W	W	W	WI	N
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	W	W	W	W	Ŵ	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	W	W	W	W	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	W	Ŵ	W	•	•	•
•	•	•		В	в			•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
			B	в	в																		
		в	в	в	в																		
	в	в	в	в	в																		
B	B	B	B	B	B			2								B				2		2	
B	B	B	B	B	B					•					B	B	B		-	-			
B	B	B	B	B	B	•	•	•	•	•	•	•	•	B	B	B	B	•	•	•	•	•	•
	D	D	D	D	D	•	•	•	•	•	•	•	D	D			D	•	•	•	•	•	•
B	D	D	D	Б	•	•	•	•	•	•	•	:	D	D	D.	D.	D	•	•	•	•	•	•
В	в	в	в	•	•	•	•	•	•	•	•	в	в	В	В	B.	в	•	•	•	•	•	•
B	B	B	•	•	•	•	•	•	•	•	•	B	B	B	B	B	B	•	•	•	•	•	•
B	B	•	•	•	•	•	•	•	•	•	•	B	B	B	B	B	B	•	•	•	•	•	•
B	•	•	•	•	•	•	•	•	•	•	•	B	B	B	B	B	B	•	•	•	•	•	•

$a(24) \geq 84$

Bob Selcoe (2016)

Possible solution: $a(n) = floor(7 n^2/48) except n=5, 9$?

Number of ways to draw n circles in the affine plane

Jonathan Wild Music Department, McGill

Some of the 173 arrangements of 4 circles

Counted (and drawn) by Jon Wild

More of the 173 arrangements of 4 circles

Counted (and drawn) by Jon Wild

A250001

Lexicographically Earliest Sequences

(LES sequences: A recent addiction)

- LES binary cube-free sequence
- EKG sequence
- Rémy Sigrist's sequence
- 2-dimensional LES

```
What is the Lexicographically Earliest
             Binary Cube-Free Sequence?
Axel Thue (1912):
         T = 0110100110010110... is cube-free
            Start with A = 0, repeat A \mapsto AA
David W.Wilson (Feb. 2017):
         What is LES binary cube-free sequence?
00100100 (oops!) 00100101...
                                         A282317
Have 10000 terms, have proof that first 999 are correct
```

What is the Lexicographically Earliest Binary Cube-Free Sequence? (cont.) Does it exist? Smallest rational number > sqrt(2)?? LES nonzero binary sequence with finite no. of 1's??

Theorem: It exists.

Proof: Let B = all 0,1 sequences Define distance $d(S,T) = 2^{-i}$ if S,T first differ at ith place Identifies B with real interval [0,1) Let C = cubefree sequences Complement of C is open set in this metric space. So C is closed set, so limit exists. QED

What is the Lexicographically Earliest Binary Cube-Free Sequence? (cont.) Theorem: The first 3 terms W of A282317 are correct. Proof: I. Use computer to show no earlier start is possible (back-tracking) 2. Claim there IS a cubefree extension of W: Define E = WT. If E = XXX..., |X| > |W|, say X = WYThen E = WYWYWY..., soT = Y W Y W Y(Set YW = Ib say)but Thue-Morse T is overlap-free, contradiction alfalfa is not overlap-free

What is the Lexicographically Earliest Binary Cube-Free Sequence? (cont)

But what IS this sequence? (A282317)

EKG Sequence (A64413) 1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, ...

a(n) = min k such that

- GCD { a(n-1), k } > 1
- k not already in sequence

LES with GCD(a(n-1),a(n)) > 1 for n>2.

- Jonathan Ayres, 2001
- Analyzed by Lagarias, Rains, NJAS, Exper. Math., 2002

Theorems:

EKG Sequence

- The sequence is a permutation of the natural numbers
- $c_1 n \leq a(n) \leq c_2 n$

Conjecture:

•
$$a(n) \sim n\left(1 + \frac{1}{3\log n}\right)$$

for the main terms

EKG Sequence

LEMMA I IF OO MANY MULTIPLES OF PRIME P APPEAR, THEN ALL MULTIPLES DO. Pf. Rp not in sequence ∃no s.t. n ≥no ⇒ a(n) > kp $\therefore a(n) = ip \quad \therefore a(n+1) = kp, \quad X_{k}$ LEMMA 2 IF ALL MULTIPLES OF P APPEAR THEN ALL NUMBERS DO. Pf. R not in sequence $a(n) = kip \quad a(n+1) = k \quad \not >$ THEOREM { a(u) } IS PERM. OF { 12. PJ. IF OD MANY DIFFI PRIMES. : OD MANY 2p's, USE LI, L2. IF FINITELY MANY DIFFT PRIMES. ONE APPBARS OD OFTEN, NSE LI, LZ. QED

A280864 REMY SIGRIST'S SEQUENCE

LES of positive integers such that if a prime p divides a(n) then p divides a(n-1) or a(n+1) but not both

Thursday, June 22, 17

A280864

Conjecture: This is a permutation of the positive integers.

l can prove: - every prime appears - every even number appears - infinitely many odd multiples of any odd prime p

- every number appears iff every square appears

But I cannot prove that every odd number appears

2-D LES's

- LES square array (by anti-diagonals)
- LES infinite array (spiral)

Thursday, June 22, 17

A274641

Defn.: LES with no repeats in any row, column, or diagonal of slope +-1

Conjecture: Every row, column, and diagonal of slope +-1 is a permutation of non-negative integers Nothing is known!

The Curling Number Conjecture

The Curling Number Conjecture

CURLING NUMBER CONJECTURE

- START WITH ANY FINITE STRING
- · APPENS CURLING NUMBER
 - ·REPEAT
- · THEN MUST REACH A 1 !?

E.G. START: $2 2 2 3 2 2 3 2 2 3 3 2 1 \dots$ THEN $2 3 2 2 2 3 3 2 1 \dots$

Gijswijt's Sequence

Fokko v. d. Bult, Dion Gijswijt, John Linderman, N. J. A. Sloane, Allan Wilks (J. Integer Seqs., 2007)

Start with I, always append curling number

I I <u>2</u> I I 2 <u>2</u> <u>3</u> I I 2 I I 2 2 2 3 2 | | 2 I I 2 2 2 3 | | 2 I I 2 2 2 3 2 <u>2 3 2 2 3 3 2</u> 2 (A090822) a(220) = 4

Is there a 5?

Is there a 5? 300,000 terms: no 5

Is there a 5? 300,000 terms: no 5 $2 \cdot 10^6 \text{ terms: no 5}$

Is there a 5? 300,000 terms: no 5 $2 \cdot 10^6 \text{ terms: no 5}$ $10^{120} \text{ terms: no 5}$

Is there a 5? 300,000 terms: no 5 $2 \cdot 10^6 \text{ terms: no 5}$ $10^{120} \text{ terms: no 5}$ NJAS, FvdB: first 5 at about term $10^{10^{23}}$

First n appears at about term

(A90822)

Proofs could be simplified if Curling Number Conjecture were true

How far can you get with an initial string of n 2's and 3's (before a 1 appears)?

THE UNIQUE RECORD STARTS : LENGTH 8: 23222323 -> 66 LENGTH 22: 23223223232323232323232323 -> 142 LENGH 48 -> 179 LENGTH 77 -> 250 JOINT WORK WITH BEN CHAFFIN 4 (INTEL)

Conjecture

LET M(n) = MAX LENGTH ATTAINED STARTING WITH n 2's 8 3's. IF S ACHIEVES m(n)>m(n-1)+1 THEN S DOES NOT CONTAIN W4, W= . (SO NOT 2.2.2.2) Searched n <= 53 Conjecture . . S ALSO DOES NOT CONTAIN 33. Searched n <= 80

Curling Number Conjecture, continued

New A281488 with key-words "look" and "hear"

A281488 from Andrey Zabolotskiy January 22 2017

$$a(n) = -\sum_{\substack{d \mid (n-2)\\1 \le d \le n-1}} a(d)$$

1, -1, -1, 0, 0, 0, -1, 1, 0, -1, 0, ...

Like these problems?

Become a volunteer OEIS editor!

Contact Neil Sloane, <u>njasloane@gmail.com</u> or (easier) <u>president@oeis.org</u>

New sequence? Register, submit it!

Join Sequence Fans Mailing List