Confessions of a Sequence Addict

Neil J.A. Sloane

Math. Dept., Rutgers University and
The OEIS Foundation, Highland Park, NJ

AofA 2017
Princeton

Outline

- About the OEIS
- Fun with digits
- Sequences from geometry
- Lexicographically Earliest Sequences ...
- The Curling Number Conjectue

The On－Line Encyclopedia of Integer Sequences ${ }^{\circledR}$（OEIS®）

Enter a sequence，word，or sequence number：

Search Hints Welcome Video
For more information about the Encyclopedia，see the Welcome page．
Languages：English Shqip العربية Bangla Български Català 中文（正體字，笡化字（1），笽化字（2））
Hrvatski Čeština Dansk Nederlands Esperanto Eesti فlu Suomi Francais Deutsch E हिंदी Magyar Igbo Bahasa Indonesia Italiano 日本語 bूूㅜ 한국어 Lietuviu मराठी Bokmål Nynorsk Polski Português Română Pyсский Српски Slovenščina Español Svenska Tagalog ภาษาไทย Türkçe Yкраїнська ور」 Tiếng Viêt Cymraeg

Lookup \mid Welcome $|\underline{\text { Wiki }}|$ Register \mid Music \mid Plot $2 \mid$ Demos $\mid \underline{\text { Index } \mid \text { Browse }|\underline{\text { More }}| \text { WebCam }}$
Contribute new seq．or comment \mid Format \mid Style Sheet \mid Transforms \mid Superseeker \mid Recent $\mid \underline{\text { More pages }}$ The OEIS Community I Maintained by The OEIS Foundation Inc．

License Agreements，Terms of Use，Privacy Policy．

OEIS.org

- Fun: $2,4,6,3,9,12,8,10,5,15, \ldots$?
- Addictive (better than video games)
- Accessible (free, friendly)
- Street creds (6000 citations)
- Interesting, educational
- Essential reference
- Low-hanging fruit
- Need editors

Facts about the OEIS

- Accurate information about 300000 sequences
- Definition, formulas, references, links, programs
- View as list, table, graph, music
- 75 new entries and updates every day
- 6000 articles and books cite the OEIS
- Often called one of best math sites on the Web
- Since 2010, a moderated Wiki, owned by OEIS Foundation, a 501 (c)(3) public charity

Main Uses for OEIS

- To see if your sequence is new, to find references, formulas, programs
- Catalan or Collatz? (Very easy or very hard?)
- Many collaborations, very international
- Source of fascinating research problems(*)
- Has led many people into mathematics
- Fun, Escape
(*) Look for:"Conjecture","It appears that","It would be nice to", ...

Fun With Digits

- "Climb to a prime"
- Binary version
- Home primes
- Powertrains
- A memorable prime

NEWS FLASH: JUNE 52017
Math Prof loses \$1000 bet!

$$
\text { If } n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots \text { then } f(n)=p_{1} e_{1} p_{2} e_{2} \cdots \text { but omit any } e_{i}=1
$$

n	1	2	3	4	5	6	6	7	8	9	10	11	12		20	$\begin{aligned} & \text { A080670 } \\ & \text { Al95264 } \end{aligned}$
$\mathrm{f}(\mathrm{n})$	1	2	3	22	5	23	237	7	23	32	25	11	223		225	
F(n)	1	2	3	211	5	23	37	7	23	2213	2213	11	223		\uparrow	

John Conway, 2014: Start with n, repeatedly apply f until reach I or a prime. Offers \$1000 for proof or disproof. James Davis, June 5 20I7:

$13532385396179=13.53 \wedge 2.3853 .96179$

Fixed but not a prime!

JAMES DANS:
TRY $n=x p \quad p \gg$ yprimes in x

$$
\begin{gathered}
f(n)=f(x) 10^{y}+p=x p \\
\frac{f(x)}{x-1} \cdot 10^{y}=p
\end{gathered}
$$

Gress $\quad x=m 10^{y}+1$

$$
\frac{f(x)}{m}=p
$$

$m=1407$ works! $y=5 \quad p=96179$

$$
\begin{aligned}
x & =1407 \cdot 10^{5}+1=13.53^{2} \cdot 3853 \\
n & =13 \cdot 53^{2} \cdot 3853 \cdot 96179 \\
& =13532385396179
\end{aligned}
$$

BINARY VERSION:

$$
\begin{array}{lllllllllll}
n & 1 & 2 & 3 & 4 & 5 & \cdots & 9 & \cdots & \\
f(n) & 1 & 2 & 3 & 10 & 5 & \cdots & 14 & \cdots & \text { A230625 } \\
F(n): & 1 & 2 & 3 & 31 & 5 & \cdots & 23 & \cdots & \text { A230627 }
\end{array}
$$

DAVD SEAL 6/13/2017:

$$
\begin{aligned}
255987=3^{3} \cdot 19 \cdot 499 & \rightarrow 111110011111110011 \\
& =255987
\end{aligned}
$$

ALSo

As of June 17 2017, based on work of Thai Wah Wu (IBM) and David J. Seal: there are two known loops of length 2 ; 217 is first number not to reach I or prime;
234 is first number that seems to blow up (see A287878).
No, yesterday, Sean Irvine found at step 104,
234 reaches 3507432297483 I75I92608577776609440I896629040678664I
Numbers that don't reach I or a prime: $217,255,446,558,717,735,775, .$.

HOME PRIMES: Jeff Helen 1990 A37274

$$
\left.\begin{array}{clllllllllll}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 49 & & \ldots
\end{array}\right)
$$

NO KNOWN CYCLES!

POWER TRAINS: John Conway, 2007

$$
\text { If } n=a b c d e \ldots \text { then } f(n)=a^{b} c^{d} e \ldots \text { with } 0^{0}=1
$$

$f(24)=2^{\wedge} 4=16, f(623)=6^{\wedge} 2.3=108, \ldots \quad(A \mid 33500)$
The known fixed points are

$$
\begin{aligned}
1, \ldots, 9, \quad 2592 & =2^{5} \cdot 9^{2}, \text { and } \quad(\mathrm{Al} 35 \\
n=2^{46} 3^{6} 5^{10} 7^{2} & =24547284284866560000000000 \\
f(n) & =2^{4} 5^{4} 7^{2} 8^{4} 2^{8} 4^{8} 6^{6} 5^{6}=n
\end{aligned}
$$

Conjecture: no other fixed points (none below $10^{\wedge} 100$)
Perhaps all these problems have only finitely many (primitive) exceptions?

A Memorable Prime!

A Memorable Prime!

$$
\begin{array}{cc}
1 & \\
121 & 11^{2} \\
12321 & 111^{2} \\
1234321 & 1111^{2}
\end{array}
$$

12345678987654321 12345678910987654321
111111111^{2}
Prime!

When is 123...n-1 $n \mathrm{n}-1$... 21 a prime?
Answer: when n is 10,2446 , but next term is unknown!

When is $1234 . .$. n prime?

$$
1234567=127.9721
$$

$12345678910111213=113.125693 .869211457$

Conjecture: infinitely many primes
None are known!
We know the smallest one has $n>340000$
See A7908 for details of the search (which seems to have stalled)

Sequences from Geometry

- Peaceable queens: A250000
- Ways to draw n circles in plane: A25000I

Poster on the OEIS Foundation web site

OEIS.org

Peaceable Queens A250000

Peaceable coexisting armies of queens: the maximum number m such that m white queens and m black queens can coexist on an $n \mathrm{X} n$ chessboard without attacking each other.
$0,0,1,2,4,5,7,9,12,14,17,21,24$

$$
\begin{array}{cc}
\uparrow & \uparrow \\
4 \times 4 & \|\mid \times\| \|
\end{array}
$$

A250000

Models and illustrations by Michael Thamas De Vligger, ALL, AGGA, 7 Janaury 2016

(Michael De Vlieger)

$a(24) \geq 84$
 Bob Selcoe (2016)

A250000

Peter Karpov

$x=I / 4, y=I / 3$, density $=.146$, Optimal?
Possible solution: $a(n)=$ floor $\left(7 n^{\wedge} 2 / 48\right)$ except $n=5,9$?

Number of ways to draw n circles in the affine plane
 Jonathan Wild
 Music Department, McGill
 A25000 I

No. of arrangements of n circles in the plane

A25000 1

$$
a(3)=14:
$$

I, 2, 3, 4, 5
I, 3, I4, I73, 1695 I
 Jonathan Wild

A25000 I

Some of the 173 arrangements of 4 circles

Counted (and drawn) by Jon Wild

A25000 I

More of the 173 arrangements of 4 circles

Counted (and drawn) by Jon Wild

Lexicographically

 Earliest Sequences

 Earliest Sequences}
(LES sequences: A recent addiction)

- LES binary cube-free sequence
- EKG sequence
- Rémy Sigrist's sequence
- 2-dimensional LES

What is the Lexicographically Earliest Binary Cube-Free Sequence?
Axel Thue (1912):

$$
\mathrm{T}=0110100 \mid 10010110 \ldots \text { is cube-free }
$$

Start with $A=0$, repeat $A \mapsto A \bar{A}$
David W.Wilson (Feb. 20I7):
What is LES binary cube-free sequence?
00100100 (oops!) 00100101... A282317
Have 10000 terms, have proof that first 999 are correct

What is the Lexicographically Earliest Binary Cube-Free Sequence? (cont.)

Does it exist?
Smallest rational number > sqrt(2)??
LES nonzero binary sequence with finite no. of I's??
Theorem: It exists.
Proof: Let $\mathrm{B}=$ all $0, \mathrm{I}$ sequences
Define distance $d(S, T)=2^{\wedge}$-i if S, T first differ at ith place Identifies B with real interval $[0, \mathrm{I})$

Let $\mathrm{C}=$ cubefree sequences
Complement of C is open set in this metric space.
So C is closed set, so limit exists. QED

What is the Lexicographically Earliest Binary Cube-Free Sequence? (cont.)

Theorem:

The first 3 terms W of A 282317 are correct.

Proof:

I. Use computer to show no earlier start is possible (back-tracking)
2. Claim there IS a cubefree extension of W:

Define $E=W T$.

$$
\text { If } E=X X X \ldots,|X|>|W| \text {, say } X=W Y
$$

Then $E=W Y W Y W Y$..., so

$$
T=Y W Y W Y . . . \quad(S e t Y W=1 b \text { say })
$$

but Thue-Morse T is overlap-free, contradiction

What is the Lexicographically Earliest Binary Cube-Free Sequence? (cont)

But what IS this sequence? (A2823I7)

```
0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1,
0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0
```


EKG Sequence (A644I3)

$I, 2,4,6,3,9, I 2,8, I 0,5, I 5, \ldots$
$a(I)=I, a(2)=2$,
$a(n)=\min k$ such that

- GCD $\{\mathrm{a}(\mathrm{n}-\mathrm{I}), \mathrm{k}\}>\mathrm{l}$
- k not already in sequence

LES with GCD $(\mathrm{a}(\mathrm{n}-\mathrm{I}), \mathrm{a}(\mathrm{n}))>\mathrm{I}$ for $\mathrm{n}>2$.

- Jonathan Ayres, 200I
- Analyzed by Lagarias, Rains, NJAS, Exper. Math., 2002

Theorems:

EKG Sequence

- The sequence is a permutation of the natural numbers
- $c_{1} n \leq a(n) \leq c_{2} n$

Conjecture:

- $a(n) \sim n\left(1+\frac{1}{3 \log n}\right)$
for the main terms

EKG Sequence LEMMA I IF ∞ MANY MULTIPLES OF PRIME P APPEAR, THEN ALL MULTIPLES DO.
Pf. Kp not in sequence

$$
\begin{aligned}
& \exists n_{0} \text { sit. } n \geqslant n_{0} \Rightarrow a(n)>k p \\
& \therefore a(n)=i p \quad \therefore a(n+1)=k p, *
\end{aligned}
$$

LEMMA 2 IF ALL MULTIPLES OF p APPEAR THEN ALL NUMBERS DO.
Pf. R not in sequence

$$
a(n)=k i p \quad a(n+1)=k
$$

THEOREM $\{a(n)\}$ IS PERM, OF $\{1,2-j\}$
Pf. If ∞ many diff i primes,

$$
\therefore \infty \text { MANY } 2 p^{\prime} \text { 's, USE LI,L2. }
$$

IF FINITELY MANY DIFF PRIMES, ONE APPEARS DD OFTEN, USE L1,L2.

QED

REM SIGRIST’S SEQUENCE
LES of positive integers such that if a prime p divides $a(n)$ then p divides $a(n-I)$ or $a(n+1)$ but not both

| $n: 1$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a(n): 1$ | 2 | 4 | 3 | 6 | 8 | 5 | 10 | 12 | 9 | 7 | 14 | 16 | 11 | 22 | |
| $p(n):-$ | - | 2 | - | 3 | 2 | - | 5 | 2 | 3 | - | 7 | 2 | - | 11 | |
| $q(n):-$ | 2 | - | 3 | 2 | - | 5 | 2 | 3 | - | 7 | 2 | - | 11 | 2 | |
| $n: 16$ | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
| $a(n): 18$ | 15 | 20 | 24 | 21 | 28 | 26 | 13 | 17 | 34 | 30 | 49 | 19 | 38 | 32 | |
| $p(6):$ | 2 | 3 | 5 | 2 | 3 | 7 | 2 | 13 | - | 17 | 2 | 15 | - | 19 | 2 |
| $q(n): 3$ | 5 | 2 | 3 | 7 | 2 | 13 | - | 17 | 2 | 15 | - | 19 | 2 | - | |

Conjecture: This is a permutation of the positive integers.
I can prove:

- every prime appears
- every even number appears
- infinitely many odd multiples of any odd prime p
- every number appears iff every square appears

But I cannot prove that every odd number appears

2-D LES's

- LES square array (by anti-diagonals)
- LES infinite array (spiral)

0	2	1		3	4	-	-	A274528
1	3	4	0	7	-	-		
2	0	5	1	,	\bullet			
3	1	2	4			ny ro	, co	repeats lumn,
4	6	0	-			ona	f s	ope +-1
5	7	-	Th. Every row, every column, is perm. of nonneg. integers					
6	-		Conjecture: So is every diagonal.					

$$
\begin{array}{llllll}
3-10-9-2-7-6 & 8 & \\
1 & 2-4-5 & 0 & 1 & 3 & \text { A27464I } \\
6 & 2-4 & \\
7 & 0 & 1-3-2 & 5 & 4 & \text { Defn.: LES with no repeats } \\
1 & 4 & 2 & 0-1 & 3 & 7
\end{array} \quad \text { or diagonal of slope +-I }
$$

Conjecture: Every row, column, and diagonal of slope $+-I$ is a permutation of non-negative integers
Nothing is known!

The Curling Number Conjecture

The Curling Number Conjecture

Definition
of
Curling
Number

CURLING NUMBER CONJECTURE

- Start with any finite string
- APPEND CURLING NUMBER

REPEAT

- THEN MUST REACH A I !?
E.G.

START: $222322>$
THEN $\left.\begin{array}{lllllllll}2 & 3 & 2 & 2 & 2 & 3 & 3 & 2 & 1\end{array}\right]$ Boo!

Gijswijt's Sequence

Fokko v. d. Bult, Dion Gijswijt, John Linderman, N. J.A. Sloane, Allan Wilks (J. Integer Seqs., 2007)

Start with I, always append curling number

$$
\begin{aligned}
& 11 \underline{2} \\
& 112 \underline{2} \underline{3} \\
& \text { | } 12 \\
& \text { 1 1 } 22223 \\
& 112 \\
& \begin{array}{llllll}
1 & 1 & 2 & 2 & 2 & 3
\end{array} \\
& 112 \\
& \begin{array}{llllllllllllllll}
1 & 1 & 2 & 2 & 2 & 3 & 2 & \underline{2} & \underline{2} & \underline{3} & \underline{2} & \underline{2} & \underline{2} & \underline{3} & \underline{3} & \underline{2}
\end{array} \\
& 112 \\
& a(220)=4
\end{aligned}
$$

Gijswijt, continued

Gijswijt, continued

Is there a 5 ?

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5

Gijswijt, continued

Is there a 5 ?
300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5

Gijswijt, continued

Is there a 5 ?

300,000 terms: no 5
$2 \cdot 10^{6}$ terms: no 5
10^{120} terms: no 5
NJAS, FvdB: first 5 at about term $10^{10^{23}}$

Gijswijt, continued

First n appears at about term

(F.v.d. Bult et al., J. Integer Sequences, 2007)
(A90822)

Gijswijt, continued

Proofs could be simplified if Curling Number Conjecture were true

How far can you get with an initial string of n 2's and 3's
(before a I appears)?

THE UNIQUE RECORD STARTS:
LENGTH 8: $23222323 \rightarrow 66$
LENGTH 22:

$$
\begin{aligned}
& 2322322323222323223223 \\
& \rightarrow 142
\end{aligned}
$$

LENGH $48 \rightarrow 179$

LENGTH $77 \rightarrow 250$
JOINT WORK WITH
$\frac{\text { BEN CHAFFIN }}{\text { (INTEL) }}$

LET $\mu(n)=$ MAX LENGTH
ATTAINED STARTING WITH n 2's \& 3's.
IF S ACHENES $\mu(n)>\mu(n-1)+1$
THEN S DOES NOT
CONTAIN $W^{4}, W \neq \phi$.
(SO MOT 2222)
Searched $\mathrm{n}<=53$
Conjecture
-• S ALSO DOES
NOT CONTAIN 33. Searched $\mathrm{n}<=80$

Curling Number Conjecture, continued

New A28|488 with key-words "look" and "hear"

A28I488 from Andrey Zabolotskiy January 222017

$$
\begin{gathered}
a(n)=-\sum_{\substack{d \mid n-2) \\
1 \leq d \leq n-1}} a(d) \\
1,-1,-1,0,0,0,-1,1,0,-1,0, \ldots
\end{gathered}
$$

A28I488

Click here to play
(but not in the pdf file)

Logarithmic scatterplot of |A281488(n)|

Logarithmic scatterplot of A281488(n)

OEIS.org

Like these problems?

Become a volunteer OEIS editor!

Contact Neil Sloane, njasloane@gmail.com or (easier) president@oeis.org

New sequence? Register, submit it!
Join Sequence Fans Mailing List

