3 (No, 8) Lovely Problems From the OEIS

Neil J.A. Sloane
Math. Dept., Rutgers University
and
The OEIS Foundation, Highland Park, NJ

Experimental Math Seminar, Oct 52017

With contributions from David Applegate, Lars Blomberg, Andrew Booker, William Cheswick, Jessica Gonzalez, Maximilian Hasler, Hans Havermann, Sean Irvine, Hugo Pfoertner, David Seal,Torsten Sillke, Allan Wechsler, Chai Wah Wu

Outline

I. Counting intersection points of diagonals in an n-gon, or of semicircles on a line
2. Iterating number-theoretic functions. What
(7 parts) happens when we start with n and repeatedly apply an operation like

$$
n \rightarrow f(n)=\frac{\sigma(n)+\phi(n)}{2} \quad \text { Also John Conway's } \$ 1000 \text { bet }
$$

3. Emil Post's Tag System \{00 / IIOI\} [Postponed]

Part 3. Emil Post's Tag System $\{00 / \mathrm{I}$ IOI $\}$

$S=$ binary word. If S starts with 0 , append 00 ; if S starts with I, append IIOI; delete first 3 bits. Repeat.

Emil Post, I930's; Marvin Minsky, I960's, + ...
Open: are there words S which blow up?
$S=(100)^{k}$ very interesting. All die or cycle for $\mathrm{k}<110$.
Lars Blomberg, Sept 9, 20I7: for $\mathrm{k}=110$, after $4.10^{\wedge} 12$ steps reached length $10 \wedge 7$
Yesterday. Lars Blomberg: k=1I0 died after 14 days, 43913328040672 steps; longest word had length 312992I8

A291792 -- Iterating the starting word $100^{\wedge} 110$

I. Counting Intersections of Chords or Semicircles

France I967

Amiens

Amiens Rose Windows

North
South

West

Ia. Counting Intersection points of regular polygons with all diagonals drawn

A656|

A656I $\mathrm{n}=30$ points

$$
A 656|(30)=|680|
$$

A6561: 1, 5, 13, 35, 49, 126, ...
Number of (internal) intersection points of all diagonals

Solved by Bjorn Poonen and Michael Rubinstein, SIAM J Disc. Math., 1998:
 $$
a(n) \text { is }
$$

$\binom{n}{4}+\left(-5 n^{3}+45 n^{2}-70 n+24\right) / 24 \cdot \delta_{2}(n)-(3 n / 2) \cdot \delta_{4}(n)$
$+\left(-45 n^{2}+262 n\right) / 6 \cdot \delta_{6}(n)+42 n \cdot \delta_{12}(n)+60 n \cdot \delta_{18}(n)$
$+35 n \cdot \delta_{24}(n)-38 n \cdot \delta_{30}(n)-82 n \cdot \delta_{42}(n)-330 n \cdot \delta_{60}(n)$
$-144 n \cdot \delta_{84}(n)-96 n \cdot \delta_{90}(n)-144 n \cdot \delta_{120}(n)-96 n \cdot \delta_{210}(n)$.
where $\delta_{4}(n)=1$ iff 4 divides n, \ldots
In particular, if n is odd, $a(n)=\binom{n}{4}$
A656I

Lemma: NASC for 3 diagonals to meet at a point:

$\sin \pi U \sin \pi V \sin \pi W=\sin \pi X \sin \pi Y \sin \pi Z$

$$
U+V+W+X+Y+Z=1
$$

Equivalently:

\exists rationals $\alpha_{1}, \ldots, \alpha_{6}$ such that

$$
\begin{gathered}
\sum_{j=1 . .6}\left(e^{i \pi \alpha_{j}}+e^{-i \pi \alpha_{j}}\right)=1 \\
\alpha_{1}+\cdots+\alpha_{6}=1
\end{gathered}
$$

$$
U=\frac{u}{2 \pi}, \text { etc. }
$$

Here, $\alpha_{1}=V+W-U-\frac{1}{2}$, etc.
[A trigonometric diophantine equation, solvable: Conway and Jones (1976)]

A656I (cont.)

$\mathrm{n}=8$: colored version from Maximilian Hasler

Problem Ib: Take n equally-spaced points on a line and join by

semi-circles: how many intersection

 points?The math problems web site http://www.zahlenjagd.at

Problem for Winter 2010 says:

6 points on line, A290447(6) = 15 intersection points

```
Illustration of A290447(n): Enter the number of points, n =6
```


[Torsten Sillke, Maximilan Hasler]

10 points on line, A290447(IO) = 200 intersection points

Illustration of A290447(n): Enter the number of points, $n=10$

David Applegate found first 500 terms:

$$
\begin{aligned}
& 0,0,0,1,5,15,35,70,124,200,300,445,627 \text {, } \\
& 875,1189,1564,2006,2568,3225, \ldots
\end{aligned}
$$

Lemma (David Applegate)

$\mathbb{P}=(x, y)$ with

$$
\begin{aligned}
& x=\frac{x_{3} x_{4}-x_{1} x_{2}}{x_{3}+x_{4}-x_{1}-x_{2}} \\
& y^{2}=\frac{\left(x_{3}-x_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{4}-x_{2}\right)}{\left(x_{3}+x_{4}-x_{1}-x_{2}\right)^{2}}
\end{aligned}
$$

A290447 continued

No formula or recurrence is known

$$
a(n) \leq\binom{ n}{4} \quad \text { with }=\text { iff } n \leq 8
$$

Comparison	Ia. polygon	Ib. semicircles
\# points	A656I	A290447
\# regions	A6533	A290865
\# k-fold inter. points	A292105	A290867

Part 2. Iteration of number-theoretic functions

Starting at n, iterate $k \leadsto f(k)$, what happens?

$$
f(k)
$$

2a. $\quad \sigma(k)-k$
2b. $\quad \sigma(k)-1$
(aliquot sequences)
(Erdos)
2c. $\quad(\psi(n)+\phi(n)) / 2$
2d. $\quad(\sigma(n)+\phi(n)) / 2$
2e. $\quad f(8)=23, f(9)=32, f(24)=233$
(Conway)
2f. $\quad f(8)=222, f(9)=33, f(24)=2223$
2 g . Power trains
(Erdos)
(Erdos)
(Heleen)
(Conway)

2a: Aliquot Sequences

(The classic problem)

$$
\begin{gathered}
\text { Let } \sigma(\mathrm{n})=\text { sum of divisors of } \mathrm{n}(\text { A203) } \\
\mathrm{s}(\mathrm{n})=\sigma(\mathrm{n})-\mathrm{n}=\text { sum of "aliquot parts" of } \mathrm{n}(\text { (AI065) }
\end{gathered}
$$

Start with n, iterate $k \Longrightarrow s(k)$, what happens?

$$
\begin{gathered}
\text { 30-42-54-66-78-90-144-259-45-33-15-9-4-3-1-0 } \\
\quad 16 \text { terms in trajectory, so A98007(30) }=16 .
\end{gathered}
$$

6 is fixed (a perfect number), so $\mathrm{A} 98007(6)=1$
Escape clause:A98007(n) = -1 if trajectory is infinite
Old conjecture (Catalan): all numbers go to 0 or cycle.
New conjecture: almost all numbers have an infinite trajectory
Not a single immortal example is known for cetain!

Iterate $n \Rightarrow s(n)=\operatorname{sigma}(n)-n$ (cont.)
276 is the first number that seems to have an infinite trajectory (see A8892):
$276,396,696,1104,1872,3770,3790,3050,2716,2772$, 5964, 10164, 19628, 19684, 22876, 26404, 30044, 33796, 38780, 54628, 54684, 111300, 263676, 465668, 465724, 465780, 1026060, 2325540, 5335260,...

After 2090 terms, this has reached a 208-digit number which has not yet been factored.

BLACKBOARD

$$
\begin{aligned}
& \phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) \quad \text { Euler totient, Al0 } \\
& \psi(n)=n \prod_{p \mid n}\left(1+\frac{1}{p}\right)^{\text {Dedekind psi, Al6/5 }} \\
& f(n)=\frac{\psi(n)+\phi(n)}{2} \quad \text { A291784 }
\end{aligned}
$$

2b, 2c, 2d: Three Problems from Erdos and Guy (UPNT)

Iterate
(2b) $k \rightarrow \sigma(k)-1$
(2c) $k \rightarrow \frac{\psi(k)+\phi(k)}{2}$
(2d) $\quad k \rightarrow \frac{\sigma(k)+\phi(k)}{2}$
starting at n , what happens?

$$
\begin{aligned}
\sigma(k) & =\text { sum of divisors (A203) } \\
\phi(k) & =k \prod_{p \mid k}\left(1-\frac{1}{p}\right) \\
\psi(k) & =k \prod_{p \mid k}\left(1+\frac{1}{p}\right) \\
& (\mathrm{A} \mid 0)
\end{aligned}
$$

Problem 2b: Iterate $f(k)=\operatorname{sigma}(\mathrm{k})-\mathrm{I}$

$\mathrm{k}>\mathrm{I}$: $\operatorname{sigma}(\mathrm{k})>=\mathrm{k}+\mathrm{I},=$ iff $\mathrm{k}=$ prime
So either we reach a prime (= fixed point) or it blows up
Erdos conjectured that we always reach a prime
n \mathbf{y} trajectory

2						0
3						0
4	6	11				2
5						0
6	11					1
7						0
8	14	23				2
9	12	27	39	55	71	5

Prime reached (or -I): A39654
Steps: A39655

Problem 2b: Iterate $f(k)=\operatorname{sigma}(k)-I \quad$ (cont.)

Numbers that take a record number of steps to reach a prime: (A292ll4)
$2,4,9,121,301,441,468,3171,8373,13440$, 16641, 16804, 83161, 100652, 133200, ...

QI: What are these numbers?
Q2: Do we always reach a prime, or is there a number that blows up?

Problem (2c): Iterate $k \rightarrow \frac{\psi(k)+\phi(k)}{2}$ starting at n , what happens?

$$
f(k)=\frac{k}{2}\left(\prod_{p \mid k}\left(1+\frac{1}{p}\right)+\prod_{p \mid k}\left(1-\frac{1}{p}\right)\right)
$$

Prime powers $p^{t}, t \geq 0$, are fixed, otherwise we grow. So either we reach a prime power or we increase for ever. BUT NOWWE CAN INCREASE FOR EVER!

Problem Rc (cont.) Iterate $f(n)=\frac{\psi(n)+\phi(n)}{2}$
Numbers that blow up:

$$
45,48,50, \ldots, 147,152, \ldots \text { (A291787) }
$$

Theorem (R. C. Wall, I985)
The trajectory of I488 is infinite:

Trajectories of:
45 through 147 contain 1488 152 merges after 389 steps:

$$
\begin{aligned}
& a_{0}=1488=16 \cdot 3 \cdot 31 \\
& a_{1}=1776=16 \cdot 3 \cdot 37 \\
& a_{2}=2112=16 \cdot 3 \cdot 44 \\
& a_{3}=2624=16 \cdot 4 \cdot 41 \\
& a_{4}=2656=16 \cdot 2 \cdot 83 \\
& a_{5}=2672=16 \cdot 167 \\
& a_{6}=2680=16 \cdot \frac{5 \cdot 67}{2} \\
& a_{7}=2976=32 \cdot 3 \cdot 31 \\
& =0
\end{aligned}
$$

$b_{389}=2^{104} \cdot 3.31$, thereafter $b_{t}=a_{t} .2^{100}$

Problem 2c (cont.) Iterate $f(n)=\frac{\psi(n)+\phi(n)}{2}$
Conjecture (weak):
If a number blows up, its trajectory merges with that of 45 (A291787)

Problem (2d): Iterate
 $n \rightarrow f(n)=\frac{\sigma(n)+\phi(n)}{2}$

starting at n , what happens?
A292 $108=$ no. of steps to reach I , a prime (fixed point), or a fraction (dies), or -I if immortal;

Calculations on this problem by Hans Havermann, Sean Irvine, Hugo Pfoertner

STEPS		
15	0	
25	0	
35	0	
$4 \rightarrow \frac{9}{2}$	1	
$5 S$	0	
$6 \rightarrow 75$	1	
75	0	
$8 \rightarrow \frac{19}{2}$	1	
$9 \rightarrow \frac{19}{2}$	1	
$10 \rightarrow 110$	1	
$12 \rightarrow 16 \rightarrow \frac{39}{2}$	BLACK-	
$13 \rightarrow$	0	
$14 \rightarrow 15 \rightarrow 16 \rightarrow \frac{39}{2}$		
BOARD		
\cdots		
$270 \rightarrow \cdots$		

Problem 2d (cont.) $\quad n \rightarrow f(n)=\frac{\sigma(n)+\phi(n)}{2}$

- $n=1$ or a prime: fixed points
- Fact: For $n>2$, sigma(n)+phi(n) is odd iff $n=$ square or twice a square
- $n=$ square or twice a square, $n>2$, dies in one step
- A290001: reaches a fraction and dies in more than one step:
12, 14, 15, 20, 24, 28, 33, 34, 35, 42, 48, 54, 55, 56, 62, 63, 69, 70, ...
- A291790: apparently immortal:

270, 290, 308, 326, 327, 328, 352, 369, 393, 394, 395, 396, 410, 440, 458, 459, 465, 496, 504, ...
(blue: trajectories appear to be disjoint)

Problem 2d (cont.) $n \rightarrow f(n)=\frac{\sigma(n)+\phi(n)}{2}$
A291789: Trajectory of 270:
270, 396, 606, 712, 851, 852, 1148, 1416, 2032, 2488, 2960, 4110, 5512, 6918, 8076, 10780, 16044, 23784, 33720, 55240, 73230, 97672, 118470, 169840, 247224, 350260, 442848, 728448, 1213440, 2124864, 4080384, 8159616, 13515078, 15767596, 18626016, 29239504, 39012864, ...
after 515 terms it has reached a 142 -digit number
766431583175462762130381515662187930626060 289448722569860560024833735066967138095365 846432527969442969920899339325281010666474 4901740672517008
and it is still growing

Problem 2d (cont.) $n \rightarrow f(n)=\frac{\sigma(n)+\phi(n)}{2}$
The question that kept me awake at night:
HOW DID 270 KNOW ITWAS DESTINED TO BE IMMORTAL?
What was the magic property that guaranteed that it would never reach a fraction or a prime?
(We don't know for sure that is true, but it seems certain)
Answer:
It was just lucky, that's all!
It won the lottery.

Problem 2d (cont.) $\quad f(n)=\frac{\sigma(n)+\phi(n)}{2}$
Andrew Booker (Bristol): It appears that almost all numbers are immortal

Consider a term $s=f(r)$ in a trajectory.
3 possibilities: $f(s)=$ fraction (dies), prime (fixed point), or composite (lives)
 If s is even, no worries $[f(s)$ is integer unless $s=2 . s q u a r e$ or 4.square, rare]
If $\mathrm{s}=\mathrm{f}(\mathrm{r})$ is odd, dangerous. Implies $\sigma(r)+\phi(r)$ is twice an odd number(A292763)
such r are rare. Implies $r=p m$, p prime, $m=\square$ or $2 \square$
$r=2^{*} 3^{e_{1}} 5^{e_{2}} 7^{e_{3}} \ldots$, e_{i} all even or at most one odd.
How many such $r \leqslant x$?
Use Selberg Upper Bound Sieve.
Answer:

$$
O\left(\frac{x}{(\log x)^{2}}\right)
$$

\therefore Probability of dangerous r is $\frac{1}{(\log x)^{2}}$.
But sequate trajectory is growing exponentially, and $\sum \frac{1}{k^{2}}$ converges.
So typical large composite term has little chance of ever reaching a prime or a fraction.

Problem $2 f$
A080670

$$
f(8)=23, f(9)=32, f(24)=233
$$

$$
\text { If } \begin{aligned}
n= & p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots \\
& p_{1}<p_{2}<p_{3}<\cdots
\end{aligned}
$$

then $f(n)$ has decimal expansion

$$
p_{1} e_{1} p_{2} e_{2} p_{3} e_{3} \cdots
$$

except omit any $e_{i}=1$

$$
\begin{aligned}
f(9464) & =f\left(2^{3} \cdot 7.13^{2}\right) \\
& =237132 .
\end{aligned}
$$

NEWS FLASH: JUNE 52017
Math Prof loses \$1000 bet!

$$
\text { If } n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots \text { then } f(n)=p_{1} e_{1} p_{2} e_{2} \cdots \text { but omit any } e_{i}=1
$$

n	1	2	3	4	5	6	7	8		9	10	11	12		20	$\begin{aligned} & \text { A080670 } \\ & \text { Al } 95264 \end{aligned}$
$\mathrm{f}(\mathrm{n})$	1	2	3	22	5	23	7	23		32	25	11	223		225	
F(n)	1	2		211	5	23	7	23		2213	2213	11	223		\uparrow	

John Conway, 2014: Start with n, repeatedly apply f until reach I or a prime. Offers \$1000 for proof or disproof. James Davis, June 5 20I7:

$13532385396179=13.53^{\wedge}$ 2.3853.96179

Fixed but not a prime!

JAMES DANS:
TRY $n=x p \quad p \gg$ yprimes in x

$$
\begin{gathered}
f(n)=f(x) 10^{y}+p=x p \\
\frac{f(x)}{x-1} \cdot 10^{y}=p
\end{gathered}
$$

Gress $\quad x=m 10^{y}+1$

$$
\frac{f(x)}{m}=p
$$

$m=1407$ works! $y=5 \quad p=96179$

$$
\begin{aligned}
& x=1407 \cdot 10^{5}+1=13.53^{2} \cdot 3853 \\
& n=13 \cdot 53^{2} \cdot 3853 \cdot 96179 \\
& =13532385396179
\end{aligned}
$$

BINARY VERSION:

$$
\begin{array}{cccccccccc}
n & 1 & 2 & 3 & 4 & 5 & \cdots & 9 & \cdots & \\
f(n): & 1 & 2 & 3 & 10 & 5 & \cdots & 14 & \cdots & \text { A230625 } \\
F(n): & 1 & 2 & 3 & 31 & 5 & \cdots & 23 & \cdots & \text { A230627 }
\end{array}
$$

DAVD SEAL 6/13/2017:
$255987=3^{3} \cdot 19 \cdot 499 \rightarrow 111110011111110011$

$$
=255987
$$

ALso

As of June 17 20I7, based on work of Chai Wah Wu (IBM) and David J. Seal: there are two known loops of length 2;

234 is first number that seems to blow up (see A287878). No, later Sean Irvine found at step 104,
234 reaches 350743229748317519260857777660944018966290406786641
All $n<12389$ end at a fixed point or a loop of length 2.

$$
\begin{array}{l|l}
\text { Problem } 2 f . & f(8)=222, f(9)=33, f(24)=2223
\end{array}
$$

$$
\begin{aligned}
& \text { HOME PRIMES: Jeff Helen } 1990 \text { A37274 } \\
& \begin{array}{cccccccc}
n \\
f(n), & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 2 & 3 & 22 & 5 & 23 & 7 & 222
\end{array} \\
& F(n): 12321152373331113965338635107 \\
& \text { (} 14 \text { steps) } \\
& \begin{array}{cccc}
9 & \ldots & 49 \\
33 & \ldots & 77 & (\text { A37276) } \\
311 & \ldots & ? & \text { (A37274) } \\
& & & \\
& & \text { still ground after } \\
& & & \\
& & &
\end{array}
\end{aligned}
$$

Note this is monotonic so cannot cycle
There has been essentially no progress in 27 years

POWER TRAINS: John Conway, 2007 Problem 2g.
If $n=a b c d e \ldots$ then $f(n)=a^{b} c^{d} e \ldots$ with $0^{0}=1$
$f(24)=2^{\wedge} 4=16, f(623)=6^{\wedge} 2.3=108, \ldots \quad(A \mid 33500)$
The known fixed points are

$$
\begin{aligned}
1, \ldots, 9, \quad 2592 & =2^{5} .9^{2}, \text { and } \\
n=2^{46} 3^{6} 5^{10} 7^{2} & =24547284284866560000000000 \\
f(n) & =2^{4} 5^{4} 7^{2} 8^{4} 2^{8} 4^{8} 6^{6} 5^{6}=n
\end{aligned}
$$

Conjecture: no other fixed points (none below $10^{\wedge} 100$)
Perhaps all these problems have only finitely many (primitive) exceptions?

OEIS.org

Like these problems?

Become a volunteer OEIS editor!

Contact Neil Sloane, njasloane@gmail.com or (easier) president@oeis.org

New sequence? Register, submit it!
Join Sequence Fans Mailing List

