|
|
A037278
|
|
Replace n with concatenation of its divisors.
|
|
56
|
|
|
1, 12, 13, 124, 15, 1236, 17, 1248, 139, 12510, 111, 1234612, 113, 12714, 13515, 124816, 117, 1236918, 119, 12451020, 13721, 121122, 123, 1234681224, 1525, 121326, 13927, 12471428, 129, 12356101530, 131, 12481632, 131133, 121734, 15735, 123469121836, 137
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is the union of A176555(n) for n >= 1 and A176556(n) for n >= 2. See A176553 (numbers m such that concatenations of divisors of m are noncomposites) and A176554 (numbers m such that concatenations of divisors of m are nonprimes). [Jaroslav Krizek, Apr 21 2010]
a(n) is the concatenation of n-th row of the triangle in A027750.
|
|
LINKS
|
|
|
MAPLE
|
a:=n->parse(cat(op(sort([op(divisors(n))])))):
|
|
MATHEMATICA
|
a[n_] := ToExpression[ StringJoin[ ToString /@ Divisors[n] ] ]; Table[ a[n], {n, 1, 34}] (* Jean-François Alcover, Dec 01 2011 *)
FromDigits[Flatten[IntegerDigits/@Divisors[#]]]&/@Range[40] (* Harvey P. Dale, Nov 09 2012 *)
|
|
PROG
|
(Haskell)
a037278 = read . concatMap show . a027750_row :: Integer -> Integer
(PARI) a(n) = my(s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ Michel Marcus, Jun 01 2019 and Sep 22 2022
(Magma) k:=1; sol:=[];
for u in [1..34] do D:=Divisors(u); conc:=D[1];
for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]); conc:=10^a1*conc+D[u1]; end for;
sol[u]:=conc; k:=k+1;
end for;
(MATLAB) m=1;
for u=1:34 div=divisors(u); conc=str2num(strrep(num2str(div), ' ', ''));
sol(m)=conc; m=m+1;
end
(Python)
from sympy import divisors
def a(n): return int("".join(str(d) for d in divisors(n)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,base,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|