|
|
A362113
|
|
Truncate Stirling's asymptotic series for 1! after n terms and round to the nearest integer.
|
|
3
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 12, 13, -131, -144, 1878, 2047, -31243, -34023, 603493, 656720, -13392786, -14565501, 338472513, 367934625, -9665776360, -10502979551, 309738982467, 336455915833, -11068897604205, -12020303454921, 438669580592210
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,22
|
|
COMMENTS
|
Stirling's series for N! is an asymptotic expansion. It does not converge to N! as more terms are included in the sum.
|
|
LINKS
|
|
|
FORMULA
|
In general, we take Stirling's asymptotic series for N! (N >= 1, with N = 1 for the present sequence) and truncate it after n terms. This has the value
sqrt(2*Pi)*N^(N+1/2)*exp(-N)*(Sum_{j = 0..n} c(j)/N^j),
We then round this to the nearest integer to get a(n).
|
|
MAPLE
|
h := proc(k) option remember; local j; `if`(k=0, 1, (h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
StirlingAsympt := proc(n) option remember; h(2*n)*2^n*pochhammer(1/2, n) end:
c := n -> StirlingAsympt(n); # # Peter Luschny, Feb 08 2011 (This is A001163(n)/A001164(n)).
S:=proc(k, N) local i; global c; sqrt(2*Pi)*N^(N+1/2)*exp(-N)*add(c(i)/N^i, i=0..k); end;
Digits:=200;
T:=proc(N, M) local k; [seq(round(evalf(S(k, N))), k=0..M)]; end;
T(1, 40);
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|