login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033048
Sums of distinct powers of 12.
7
0, 1, 12, 13, 144, 145, 156, 157, 1728, 1729, 1740, 1741, 1872, 1873, 1884, 1885, 20736, 20737, 20748, 20749, 20880, 20881, 20892, 20893, 22464, 22465, 22476, 22477, 22608, 22609, 22620, 22621, 248832, 248833, 248844, 248845, 248976
OFFSET
0,3
COMMENTS
Numbers without any base-12 digits greater than 1.
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
Eric Weisstein's World of Mathematics, Duodecimal
Wikipedia, Duodecimal
FORMULA
a(n) = Sum_{i=0..m} d(i)*12^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097258(n)/11.
a(2n) = 12*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(k) = 12^k = A001021(k). - Philippe Deléham, Oct 19 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 12^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017
MATHEMATICA
With[{k = 12}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* Michael De Vlieger, Oct 28 2022 *)
PROG
(PARI) {maxn=37;
for(vv=0, maxn,
bvv=binary(vv);
ll=length(bvv); texp=0; btod=0;
forstep(i=ll, 1, -1, btod=btod+bvv[i]*12^texp; texp++);
print1(btod, ", "))}
\\ Douglas Latimer, Apr 16 2012
(PARI) a(n)=fromdigits(binary(n), 12) \\ Charles R Greathouse IV, Jan 11 2017
(Haskell)
import Data.List (unfoldr)
a033048 n = a033048_list !! (n-1)
a033048_list = filter (all (< 2) . unfoldr (\x ->
if x == 0 then Nothing else Just $ swap $ divMod x 12)) [1..]
-- Reinhard Zumkeller, Apr 17 2011
CROSSREFS
Subsequence of A102487.
Row 11 of array A104257.
Sequence in context: A037278 A164852 A362113 * A108771 A041308 A260387
KEYWORD
nonn,base,easy
EXTENSIONS
Extended by Ray Chandler, Aug 03 2004
STATUS
approved