login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033050
Numbers whose set of base 14 digits is {0,1}.
4
0, 1, 14, 15, 196, 197, 210, 211, 2744, 2745, 2758, 2759, 2940, 2941, 2954, 2955, 38416, 38417, 38430, 38431, 38612, 38613, 38626, 38627, 41160, 41161, 41174, 41175, 41356, 41357, 41370, 41371, 537824, 537825, 537838, 537839, 538020
OFFSET
0,3
COMMENTS
Sums of distinct powers of 14.
The base-14 digits may comprise zero, one, or both. - Harvey P. Dale, May 12 2014
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
FORMULA
a(n) = Sum_{i=0..m} d(i)*14^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097260(n)/13.
a(2n) = 14*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*14^k. - Philippe Deléham, Oct 20 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 14^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017
MATHEMATICA
Select[Range[0, 540000], Max[IntegerDigits[#, 14]]<2&] (* Harvey P. Dale, May 12 2014 *)
FromDigits[#, 14]&/@Tuples[{0, 1}, 6] (* Harvey P. Dale, Jun 18 2021 *)
PROG
(PARI) A033050(n, b=14)=subst(Pol(binary(n)), 'x, b) \\ M. F. Hasler, Feb 01 2016
CROSSREFS
Row 13 of array A104257.
Sequence in context: A372335 A041412 A041414 * A225757 A041416 A041417
KEYWORD
nonn,base
EXTENSIONS
Extended by Ray Chandler, Aug 03 2004
STATUS
approved